久久精品99久久|国产剧情网站91|天天色天天干超碰|婷婷五天月一av|亚州特黄一级片|亚欧超清无码在线|欧美乱码一区二区|男女拍拍免费视频|加勒比亚无码人妻|婷婷五月自拍偷拍

學(xué)習(xí)方法

運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題

時(shí)間:2022-10-26 07:13:17 學(xué)習(xí)方法 我要投稿
  • 相關(guān)推薦

運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題

  轉(zhuǎn)化思想和構(gòu)造思想是數(shù)學(xué)中兩大基本的數(shù)學(xué)思想,本文就是想利用轉(zhuǎn)化思想最重要也是最有效的思想之一��轉(zhuǎn)化為已能解決的問題來解競賽題。本文以競賽題目中經(jīng)常會(huì)出現(xiàn)一些關(guān)于素?cái)?shù)、帶余除法、完全平方數(shù)等問題為著手點(diǎn),這些都是屬于初等數(shù)論范疇,而且這些知識(shí)幾乎在每年競賽題中都會(huì)出現(xiàn),包括高中數(shù)學(xué)聯(lián)賽、冬令營、中國國家隊(duì)選拔考試,乃至在IMO考試中都是必考的內(nèi)容,所以大家應(yīng)該對(duì)此給予重視。對(duì)于數(shù)論的學(xué)習(xí),不能操之過急,應(yīng)該首先把數(shù)論的基礎(chǔ)知識(shí)和性質(zhì)認(rèn)真的系統(tǒng)的學(xué)習(xí)一遍,對(duì)競賽中出現(xiàn)相應(yīng)的題目進(jìn)行反思,這一點(diǎn)是很重要的。我們一同來體會(huì)一下最近幾年全國和各省市初中競賽題目中常見的問題,如何把問題轉(zhuǎn)化。

運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題

  例1 設(shè)m是不能表示為三個(gè)互不相等的合數(shù)之和的最大整數(shù),求m的值。

  分析 我們不妨先求出三個(gè)互不相等的合數(shù)之和,即4+6+8=18,所以容易想到17是不能表示為三個(gè)互不相等的合數(shù)之和的最大整數(shù)。

  解:由于4+6+8=18,故下面我們就來證明m的最大整數(shù)是17。

當(dāng)m>18時(shí),若 ,則m>9

  即任意大于18的整數(shù)均可以表示為三個(gè)互不相等的合數(shù)之和,故m=17

  此題容易入手,逆向去考慮,采取極端性想法使問題得以解決。

例2 求滿足等式 的正整數(shù)x、y。

  分析 此問題容易想到因式分解,再加之問題里有數(shù)2003,因?yàn)?003是質(zhì)數(shù),這也是一個(gè)信息。

  解:觀察式子特點(diǎn)不難得出

  故所求的正整數(shù)對(duì)(x,y)=(1,2003),(2003,1)

  此問題考察的重點(diǎn)在于因式分解。

  例3 如果對(duì)于不小于8的自然數(shù)n,當(dāng)3n+1是一個(gè)完全平方數(shù)時(shí),n+1都能表示成k個(gè)完全平方數(shù)的和,那么k的最小值是________。

分析 我們采取分析法,因?yàn)? 是一個(gè)完全平方數(shù),所以設(shè) ,再去推導(dǎo)n和a的關(guān)系,使問題不斷得到解決。解:由已知 是一個(gè)完全平方數(shù),所以我們就設(shè) ,顯然 不是3的倍數(shù),于是 ,從而 即 ,所以k的最小值是3

  此方法是解決數(shù)論問題的一個(gè)常用的,也是基本的一個(gè)方法。

例4 設(shè) 為完全平方數(shù),且N不超過2392。求滿足上述條件的一切正整數(shù)對(duì)(x,y)共有________對(duì)。

  分析 此題與例3有相似之處,但是要難一些。首先用到了性質(zhì)8,然后再結(jié)合不等式解決此問題。

解: ,且23為素?cái)?shù),N為不超過2392的完全平方數(shù)

  所以共有(1,19),(2,15),(3,11),(4,7),(5,3)以及(1,88),(2,84),…,(22,4)

  故滿足條件的(x,y)共有5+22=27對(duì)

  此問題用到了數(shù)論里常用的方法��不等式法。把一個(gè)整數(shù)問題轉(zhuǎn)化為不等式問題,就會(huì)求出上(下)界,從而限定出所求數(shù)的范圍,同時(shí)又是整數(shù),故而使問題得以解決。

例5 已知方程 的根都是整數(shù),求整數(shù)n的值。分析 已知方程的根是整數(shù),所以先把根求出來 ,所以根號(hào)下的數(shù)就應(yīng)該是完全平方數(shù),故此問題得以解決。解:由求根公式解得

  因?yàn)榉匠痰母际钦麛?shù)

所以 是完全平方數(shù)設(shè) ,則有

  所以,分別解得整數(shù)n的值為10,0,-18,-8

此題的難點(diǎn)在于知道 是完全平方數(shù)之后,如何分解它,實(shí)際上是在解一個(gè)不定方程問題。例6 設(shè)四位數(shù) 是一個(gè)完全平方數(shù),且 ,求這個(gè)四位數(shù)。解:設(shè) 由于67是質(zhì)數(shù),故 與 中至少有一個(gè)是67的倍數(shù) 此問題值得注意的是我們在設(shè)未知數(shù)的時(shí)候,采取整體代換,即把 看成整體,從而使問題簡化。

  例7 一個(gè)自然數(shù)減去45及加上44都仍是完全平方數(shù),求此數(shù)。

分析 此類型問題在考試中出現(xiàn)多次,它的方法基本上是設(shè)出之后做差 ,然后運(yùn)用平方差公式分解,最后去解不定方程 。

  解:設(shè)此自然數(shù)為x,依題意可得

但89為質(zhì)數(shù),它的正因子只能是1與89,于是 解之,得n=45。代入(2)得 。故所求的自然數(shù)是1981。

  此問題是比較典型的,兩個(gè)式子三個(gè)未知數(shù),感覺沒有辦法解決,但是一做差就是柳岸花明又一村,所以在一些問題中我們經(jīng)常把幾個(gè)式子做差或者做和,來發(fā)現(xiàn)其中的奧妙。

  在解決數(shù)學(xué)問題時(shí),我們要以不變(知識(shí))去應(yīng)萬變(問法),不斷去探索,有時(shí)候我們可以用特值去驗(yàn)證結(jié)論,這樣就會(huì)有一個(gè)大致的方向,再通過不斷的把問題轉(zhuǎn)化,從而解決數(shù)學(xué)問題。

【運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題】相關(guān)文章:

數(shù)學(xué)解決問題心得體會(huì)04-01

《解決問題》教案02-11

解決問題教案11-06

解決糾紛問題的正確方法10-27

發(fā)現(xiàn)問題及時(shí)解決隨筆05-11

六年級(jí)數(shù)學(xué)《解決問題的策略》的教案11-10

關(guān)于解決問題的請示范文04-04

怎樣培養(yǎng)孩子解決問題能力09-30

數(shù)學(xué)后進(jìn)生轉(zhuǎn)化計(jì)劃11-25

集中解決四風(fēng)問題的專項(xiàng)調(diào)研報(bào)告06-17