- 初中數(shù)學動點題解題技巧 推薦度:
- 初中數(shù)學考試解題技巧 推薦度:
- 相關(guān)推薦
初中數(shù)學解題技巧
初中數(shù)學解題技巧,解題需要技巧,那么初中數(shù)學的有什么解題的技巧呢?下面就來看看吧!
初中數(shù)學證明題解題技巧與步驟
1. 弄清題意
此為“文字型”數(shù)學證明題,既沒有圖形,也無直觀的已知與求證。
如何弄清題意呢?根據(jù)命題的定義可知,命題由條件與結(jié)論兩部分組成,因此區(qū)分命題的條件與結(jié)論至關(guān)重要,是解題成敗的關(guān)鍵。
命題可以改寫成“如果………..,那么……….”的形式,其中“如果………..”就是命題的條件,“那么…….”就是命題的結(jié)論,據(jù)此對題目進行改寫:如果在等腰三角形中分別作兩底角的平分線,那么這兩條平分線長度相等。
于是題目的意思就很清晰了,就是在等腰三角形中作兩底角平分線,然后根據(jù)已知的條件去求證這兩條平分線相等。
這樣題目要求我們做什么就一目了然了!
2. 根據(jù)題意,畫出圖形。
圖形對解決證明題,能起到直觀形象的提示,所以畫圖因盡量與題意相符合。
并且把題中已知的條件,能標在圖形上的盡量標在圖形上。
3. 根據(jù)題意與圖形,用數(shù)學的語言與符號寫出已知和求證。
眾所周知,命題的條件---已知,命題的結(jié)論---求證,但要特別注意的是,已知、求證必須用數(shù)學的語言和符號來表示。
已知:如圖(1),在△ABC中,AB=AC, BD、CE分別是△ABC的角平分線。
求證:BD=CE
4. 分析已知、求證與圖形,探索證明的思路。
對于證明題,有三種思考方式:
(1)正向思維。
對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。
顧名思義,就是從相反的方向思考問題。
運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。
這種方法是推薦學生一定要掌握的。
在初中數(shù)學中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學這門學科知識點很少,關(guān)鍵是怎樣運用,對于初中幾何證明題,最好用的方法就是用逆向思維法。
如果你已經(jīng)上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結(jié)做題方法。
同學們認真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。
例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。
這是非常好用的方法,同學們一定要試一試。
(3)正逆結(jié)合。
對于從結(jié)論很難分析出思路的題目,同學們可以結(jié)合結(jié)論和已知條件認真的分析,初中數(shù)學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。
給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。
正逆結(jié)合,戰(zhàn)無不勝。
分析:此題要想證明 BD=CE ,就要引導學生觀察圖形(圖形(1)),弄清題意。
發(fā)現(xiàn)BD、CE分別存在于兩對三角形中:△ABD與△ACE,△BEC與△CDB,只要能證明其中任何一對三角形全等,即可利用全等三角形性質(zhì)得到對應邊相等。
(此思維屬于逆向思維)
5. 根據(jù)證明的思路,用數(shù)學的語言與符號寫出證明的過程
證明過程的書寫,其實就是把證明的思路從腦袋中搬到紙張上。
這個過程,對數(shù)學符號與數(shù)學語言的應用要求較高,在講解時,要提醒學生任何的“因為、所以”,在書寫是都要符合公理、定理、推論或以已知條件相吻合,不能無中生有、胡說八道,要有根有據(jù)!
證明:
∵AB=AC(已知)
∴∠ABC=∠ACB(等邊對等角)
∵BD、CE分別是△ABC的角平分線(已知)
∴∠1=∠ABC, ∠2=∠ACB(角平分線的定義)
∴∠1=∠2(等量代換)
在△BEC與△CDB中,
∵∠ACB=∠ABC, BC=CB, ∠1=∠2
∴△BEC≌△CDB(ASA)
∴BD=CE(全等三角形的對應邊相等)
6. 檢查證明的過程,看看是否合理、正確
任何正確的步驟,都有相應的合理性和與之相應證的公理、定理、推論,證明過程書寫完畢后,對證明過程的每一步進行檢查,是非常重要的,是防止證明過程出現(xiàn)遺漏的關(guān)鍵。
最后,同學們在平時練習中要敢于嘗試,多分析,多總結(jié)。
初中數(shù)學常用的幾種經(jīng)典解題技巧
初中數(shù)學常用的幾種經(jīng)典解題方法配方法 。
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。
通過配方解決數(shù)學問題的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。
因式分解是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。
因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
換元法換元法是初中數(shù)學中一個非常重要而且應用十分廣泛的解題方法。
我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
判別式法與韋達定理一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,
△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應用。
待定系數(shù)法在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。
它是中學數(shù)學中常用的方法之一。
構(gòu)造法在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法。
運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。
反證法反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。
反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。
用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關(guān)鍵,導出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導將成為無源之水,無本之木。
推理必須嚴謹。
導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
面積法平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。
運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。
面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。
所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
幾何變換法在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。
所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。
中學數(shù)學中所涉及的變換主要是初等變換。
有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。
另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。
將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
客觀性題的解題方法選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。
選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。
下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。
當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。
這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。
圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法.
【初中數(shù)學解題技巧】相關(guān)文章:
初中數(shù)學解題技巧方法10-05
初中數(shù)學考試解題技巧09-19
初中數(shù)學動點題解題技巧11-16
高考數(shù)學高分解題技巧10-26
中考數(shù)學選擇題解題技巧10-05
高一數(shù)學解題技巧口訣10-05
高中數(shù)學解題技巧pdf10-05
初中語文閱讀題解題技巧11-13
初中化學實驗題的解題技巧10-26
初中語文閱讀理解解題技巧11-15