- 初中數(shù)學(xué)教案優(yōu)秀 推薦度:
- 相關(guān)推薦
初中數(shù)學(xué)優(yōu)秀教案
作為一名人民教師,就不得不需要編寫教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編收集整理的初中數(shù)學(xué)優(yōu)秀教案 ,僅供參考,希望能夠幫助到大家。
初中數(shù)學(xué)優(yōu)秀教案 1
學(xué)習(xí)目標(biāo):
1.能根據(jù)具體問(wèn)題中的數(shù)量關(guān)系列出一元二次方程并利用它解決具體問(wèn)題.
2.學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)分析解決實(shí)際問(wèn)題,體會(huì)數(shù)學(xué)的價(jià)值。
重點(diǎn):列一元二次方程解應(yīng)用題
難點(diǎn):學(xué)會(huì)分析問(wèn)題中的等量關(guān)系
一、知識(shí)回顧
列方程解應(yīng)用題的一般步驟是①②③④⑤⑥
二、自學(xué)教材、合作探究
1、自學(xué)教材45頁(yè),學(xué)習(xí)分析“探究一”中的數(shù)量關(guān)系
設(shè)每輪傳染中平均一個(gè)人傳染了x個(gè)人。開始有一人患了流感,第一輪的傳染源就是這個(gè)人,他傳染了x個(gè)人,那么,用代數(shù)式表示,第一輪后共有()人患了流感;第二輪傳染中,這些人中的每個(gè)人又傳染了x個(gè)人,用代數(shù)式表示,第二輪后共有()人患了流感。則可列方程為:
2、解這個(gè)方程,得
3、想一想:三輪傳染后有多少人患流感?四輪呢?
三、檢查自學(xué)效果
1.(xxxx年畢節(jié)地區(qū))有一人患了流感,經(jīng)過(guò)兩輪傳染后共有100人患了流感,那么每輪傳染中,平均一個(gè)人傳染的人數(shù)為()
A.8人B.9人C.10人D.11人
2.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈(zèng)送一件;全組共互贈(zèng)了182件.如果全組有x名學(xué)生,則根據(jù)題意列出的方程是()
A. B. C. D.
四、指導(dǎo)學(xué)生應(yīng)用
某種電腦病毒傳播非?欤绻慌_(tái)電腦被感染,經(jīng)過(guò)兩輪感染后就會(huì)有81臺(tái)電腦被感染.請(qǐng)你用學(xué)過(guò)的知識(shí)分析,每輪感染中平均一臺(tái)電腦會(huì)感染幾臺(tái)電腦?若病毒得不到有效控制,3輪感染后,被感染的'電腦會(huì)不會(huì)超過(guò)700臺(tái)?(xxxx廣東中考9分)
解:設(shè)每輪感染中平均每一臺(tái)電腦會(huì)感染臺(tái)電腦,1分
4分
解之得6分
8分
答:每輪平均每一臺(tái)電腦會(huì)感染臺(tái)電腦,3輪感染后,被感染的電腦超過(guò)700臺(tái)。
五、鞏固訓(xùn)練:
1.一個(gè)多邊形的對(duì)角線有9條,則這個(gè)多邊形的邊數(shù)是().
A.6 B.7 C.8 D.9
2.元旦期間,一個(gè)小組有若干人,新年互送賀卡一張,已知全組共送賀卡132張,則這個(gè)小組共有( )人
A.11 B.12 C.13 D.14
3.九年級(jí)(3)班文學(xué)小組在舉行的圖書共享儀式上互贈(zèng)圖書,每個(gè)同學(xué)都把自己的圖書向本組其他成員贈(zèng)送一本,全組共互贈(zèng)了240本圖書,如果設(shè)全組共有x名同學(xué),依題意,可列出的方程是()
A.x(x+1)=240 B.x(x-1)=240
C.2x(x+1)=240 D.x(x+1)=240
4.參加中秋晚會(huì)的每?jī)蓚(gè)人都握了一次手,所有人共握手10次,則有()人參加聚會(huì)。
5.學(xué)校組織了一次籃球單循環(huán)比賽,共進(jìn)行了15場(chǎng)比賽,那么有個(gè)球隊(duì)參加了這次比賽。
6.甲型H1N1流感病毒的傳染性極強(qiáng),某地因1人患了甲型H1N1流感沒有及時(shí)隔離治療,經(jīng)過(guò)兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個(gè)人傳染了幾個(gè)人?如果按照這個(gè)傳染速度,再經(jīng)過(guò)5天的傳染后,這個(gè)地區(qū)一共將會(huì)有多少人患甲型H1N1流感?
反思:2題和4題列方程時(shí)為何不一樣呢?
六、歸納小結(jié):
1.本節(jié)課我們學(xué)習(xí)了列一元一次方程解應(yīng)用題,要注意解題步驟,特別地,要檢驗(yàn)解的結(jié)果是否正確與符合題意,并注意題型的積累。
2.(方法歸納)解應(yīng)用題地步驟是:審、設(shè)、列、解、檢、答,關(guān)鍵是尋找等量關(guān)系,可以采用列式法,線段圖示法,列表法等來(lái)幫助尋找,并注重檢驗(yàn)。
七、效果測(cè)評(píng):
1.解下列方程。(1)+10x+21=0(2)-x=1
2.兩個(gè)相鄰的偶數(shù)的積是240,求這兩個(gè)偶數(shù)。
3.參加一次足球聯(lián)賽的每?jī)蓚(gè)隊(duì)之間都進(jìn)行兩場(chǎng)比賽,共要比賽90場(chǎng),共有多少個(gè)隊(duì)參加比賽?
初中數(shù)學(xué)優(yōu)秀教案 2
一、教學(xué)設(shè)計(jì)
1.教學(xué)目標(biāo)
知識(shí)與技能:讓學(xué)生掌握初中數(shù)學(xué)的基本概念、定理和公式,并能夠應(yīng)用到實(shí)際問(wèn)題中。
過(guò)程與方法:通過(guò)探究式學(xué)習(xí)、合作學(xué)習(xí)等方式,培養(yǎng)學(xué)生的思維能力、創(chuàng)新能力和解決問(wèn)題的能力。
情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣和熱愛,培養(yǎng)他們的科學(xué)精神和探索精神。
2.教學(xué)內(nèi)容
以初中數(shù)學(xué)教材為基礎(chǔ),結(jié)合學(xué)生的實(shí)際情況和興趣愛好,選擇適當(dāng)?shù)慕虒W(xué)內(nèi)容。例如,可以選擇與日常生活密切相關(guān)的數(shù)學(xué)問(wèn)題,或者具有挑戰(zhàn)性的數(shù)學(xué)難題,以激發(fā)學(xué)生的學(xué)習(xí)興趣。
3.教學(xué)方法
采用多種教學(xué)方法相結(jié)合,如講授法、討論法、實(shí)驗(yàn)法等。通過(guò)引導(dǎo)學(xué)生自主思考、合作交流,讓他們?cè)谔骄恐邪l(fā)現(xiàn)問(wèn)題、解決問(wèn)題,從而提高他們的數(shù)學(xué)素養(yǎng)。
4.教學(xué)過(guò)程
。1)導(dǎo)入新課:通過(guò)生活實(shí)例或趣味問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣,引出本節(jié)課的主題。
。2)知識(shí)講解:系統(tǒng)講解數(shù)學(xué)概念、定理和公式,注重理論與實(shí)踐相結(jié)合,讓學(xué)生理解數(shù)學(xué)知識(shí)的本質(zhì)和應(yīng)用。
。3)探究實(shí)踐:設(shè)計(jì)具有層次性和挑戰(zhàn)性的數(shù)學(xué)問(wèn)題,引導(dǎo)學(xué)生自主思考、合作交流,培養(yǎng)他們的探究能力和創(chuàng)新精神。
(4)總結(jié)歸納:對(duì)本節(jié)課的知識(shí)進(jìn)行梳理和歸納,強(qiáng)調(diào)重點(diǎn)難點(diǎn),幫助學(xué)生鞏固所學(xué)知識(shí)。
。5)作業(yè)布置:布置適量的課后作業(yè),讓學(xué)生鞏固所學(xué)知識(shí),提高數(shù)學(xué)應(yīng)用能力。
二、教學(xué)反思
1.教學(xué)效果
通過(guò)本節(jié)課的`教學(xué),大部分學(xué)生能夠掌握所學(xué)的數(shù)學(xué)概念、定理和公式,并能夠應(yīng)用到實(shí)際問(wèn)題中。同時(shí),學(xué)生的思維能力、創(chuàng)新能力和解決問(wèn)題的能力也得到了提高。但是,仍有部分學(xué)生在理解和掌握上存在一定的困難,需要進(jìn)一步加強(qiáng)輔導(dǎo)和指導(dǎo)。
2.教學(xué)問(wèn)題
在教學(xué)過(guò)程中,我發(fā)現(xiàn)一些問(wèn)題需要改進(jìn)。首先,在教學(xué)方法上,我應(yīng)更加注重學(xué)生的主體地位,多引導(dǎo)學(xué)生自主思考和探究。其次,在教學(xué)內(nèi)容上,我應(yīng)更加注重與學(xué)生的實(shí)際生活相聯(lián)系,讓數(shù)學(xué)知識(shí)更加貼近學(xué)生的實(shí)際需求。最后,在教學(xué)評(píng)價(jià)上,我應(yīng)更加注重學(xué)生的全面發(fā)展,關(guān)注學(xué)生的個(gè)體差異,采用不同的評(píng)價(jià)方式和方法。
3.教學(xué)改進(jìn)
針對(duì)以上問(wèn)題,我將采取以下措施進(jìn)行改進(jìn)。首先,加強(qiáng)與學(xué)生的互動(dòng)和交流,多聽取學(xué)生的意見和建議,了解他們的學(xué)習(xí)需求和困難。其次,注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和合作精神,讓他們?cè)谔骄恐邪l(fā)現(xiàn)問(wèn)題、解決問(wèn)題。最后,注重學(xué)生的個(gè)體差異,采用不同的教學(xué)方法和評(píng)價(jià)方式,讓每個(gè)學(xué)生都能夠在數(shù)學(xué)學(xué)習(xí)中取得進(jìn)步。
總之,通過(guò)本次初中數(shù)學(xué)教學(xué)設(shè)計(jì)與反思,我深刻認(rèn)識(shí)到數(shù)學(xué)教學(xué)的重要性和挑戰(zhàn)性。我將繼續(xù)努力探索和實(shí)踐,不斷提高自己的教學(xué)水平和能力,為學(xué)生的全面發(fā)展貢獻(xiàn)自己的力量。
初中數(shù)學(xué)優(yōu)秀教案 3
學(xué)習(xí)目標(biāo):
1、進(jìn)一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計(jì)量的統(tǒng)計(jì)意義。
2、會(huì)計(jì)算加權(quán)平均數(shù),理解“權(quán)”的意義,能選擇適當(dāng)?shù)慕y(tǒng)計(jì)量表示數(shù)據(jù)的集中趨勢(shì)。
3、會(huì)計(jì)算極差和方差,理解它們的統(tǒng)計(jì)意義,會(huì)用它們表示數(shù)據(jù)的波動(dòng)情況。
4、會(huì)用樣本平均數(shù)、方差估計(jì)總體的平均數(shù)、方差,進(jìn)一步感受抽樣的必要性,體會(huì)用樣本估計(jì)總體的思想。
一、知識(shí)點(diǎn)回顧
1、數(shù)學(xué)期末總評(píng)成績(jī)由作業(yè)分?jǐn)?shù),課堂參與分?jǐn)?shù),期考分?jǐn)?shù)三部分組成,并按3:3:4的比例確定。已知小明的期考80分,作業(yè)90分,課堂參與85分,則他的總評(píng)成績(jī)?yōu)開_______。
2、樣本1、2、3、0、1的平均數(shù)與中位數(shù)之和等于___.
3、一組數(shù)據(jù)5,-2,3,x,3,-2,若每個(gè)數(shù)據(jù)都是這組數(shù)據(jù)的眾數(shù),則這組數(shù)據(jù)的平均數(shù)是.
4、數(shù)據(jù)1,6,3,9,8的極差是
5、已知一個(gè)樣本:1,3,5,x,2,它的平均數(shù)為3,則這個(gè)樣本的方差是。
二、專題練習(xí)
1、方程思想:
例:某次考試A、B、C、D、E這5名學(xué)生的平均分為62分,若學(xué)生A除外,其余學(xué)生的平均得分為60分,那么學(xué)生A的得分是_____________.
點(diǎn)撥:本題可以用統(tǒng)計(jì)學(xué)知識(shí)和方程組相結(jié)合來(lái)解決。
同類題連接:一班級(jí)組織一批學(xué)生去春游,預(yù)計(jì)共需費(fèi)用120元,后來(lái)又有2人參加進(jìn)來(lái),總費(fèi)用不變,于是每人可以少分?jǐn)?元,設(shè)原來(lái)參加春游的.學(xué)生x人?闪蟹匠蹋
2、分類討論法:
例:汶川大地震牽動(dòng)每個(gè)人的心,一方有難,八方支援,5位衢州籍在外打工人員也捐款獻(xiàn)愛心。已知5人平均捐款560元(每人捐款數(shù)額均為百元的整數(shù)倍),捐款數(shù)額最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款數(shù)額的中位數(shù),那么其余兩人的捐款數(shù)額分別是___________;
點(diǎn)撥:做題過(guò)程中要注意滿足的條件。
同類題連接:數(shù)據(jù)-1 , 3 , 0 , x的極差是5 ,則x =_____.
3、平均數(shù)、中位數(shù)、眾數(shù)在實(shí)際問(wèn)題中的應(yīng)用
例:某班50人右眼視力檢查結(jié)果如下表所示:
視力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5
人數(shù)2 2 2 3 3 4 5 6 7 11 5
求該班學(xué)生右眼視力的平均數(shù)、眾數(shù)與中位數(shù).發(fā)表一下自己的看法。
4、方差在實(shí)際問(wèn)題中的應(yīng)用
例:甲、乙兩名射擊運(yùn)動(dòng)員在相同條件下各射靶5次,各次命中的環(huán)數(shù)如下:
甲:5 8 8 9 10
乙:9 6 10 5 10
(1)分別計(jì)算每人的平均成績(jī);
(2)求出每組數(shù)據(jù)的方差;
(3)誰(shuí)的射擊成績(jī)比較穩(wěn)定?
三、知識(shí)點(diǎn)回顧
1、平均數(shù):
練習(xí):在一次英語(yǔ)口試中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余為84分。已知該班平均成績(jī)?yōu)?0分,問(wèn)該班有多少人?
2、中位數(shù)和眾數(shù)
練習(xí):1.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
2.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
3.在一次環(huán)保知識(shí)競(jìng)賽中,某班50名學(xué)生成績(jī)?nèi)缦卤硭荆?/p>
得分50 60 70 80 90 100 110 120
人數(shù)2 3 6 14 15 5 4 1
分別求出這些學(xué)生成績(jī)的眾數(shù)、中位數(shù)和平均數(shù).
3.極差和方差
練習(xí):1.一組數(shù)據(jù)X 、X …X的極差是8,則另一組數(shù)據(jù)2X +1、2X +1…,2X +1的極差是( )
A. 8 B.16 C.9 D.17
2.如果樣本方差,
那么這個(gè)樣本的平均數(shù)為.樣本容量為.
四、自主探究
1、已知:1、2、3、4、5、這五個(gè)數(shù)的平均數(shù)是3,方差是2.
則:101、102、103、104、105、的平均數(shù)是,方差是。
2、4、6、8、10、的平均數(shù)是,方差是。
你會(huì)發(fā)現(xiàn)什么規(guī)律?
2、應(yīng)用上面的規(guī)律填空:
若n個(gè)數(shù)據(jù)x1x2……xn的平均數(shù)為m,方差為w。
(1)n個(gè)新數(shù)據(jù)x1+100,x2+100, …… xn+100的平均數(shù)是,方差為。
(2)n個(gè)新數(shù)據(jù)5x1,5x2, ……5xn的平均數(shù),方差為。
五、學(xué)后反思:
xxx
初中數(shù)學(xué)優(yōu)秀教案 4
教學(xué)目標(biāo):
1、掌握一元二次方程的根與系數(shù)的關(guān)系并會(huì)初步應(yīng)用。
2、培養(yǎng)學(xué)生分析、觀察、歸納的能力和推理論證的能力。
3、滲透由特殊到一般,再由一般到特殊的認(rèn)識(shí)事物的規(guī)律。
4、培養(yǎng)學(xué)生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神。
教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn)
根與系數(shù)的關(guān)系及其推導(dǎo)
難點(diǎn)
正確理解根與系數(shù)的關(guān)系。一元二次方程根與系數(shù)的關(guān)系是指一元二次方程兩根的`和、兩根的積與系數(shù)的關(guān)系。
教學(xué)過(guò)程:
一、復(fù)習(xí)引入
1、已知方程x2-ax-3a=0的一個(gè)根是6,則求a及另一個(gè)根的值。
2、由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系。其實(shí)我們已學(xué)過(guò)的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡(jiǎn)潔的關(guān)系?
3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過(guò)什么計(jì)算才能得到更簡(jiǎn)潔的關(guān)系?
二、探索新知
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?
。2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結(jié):根與系數(shù)關(guān)系:
(1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零。)
。2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項(xiàng)系數(shù)化為1,再利用上面的結(jié)論。
即:對(duì)于方程ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1x2=ca
(可以利用求根公式給出證明)
例1不解方程,寫出下列方程的兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2不解方程,檢驗(yàn)下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3已知一元二次方程的兩個(gè)根是-1和2,請(qǐng)你寫出一個(gè)符合條件的方程。(你有幾種方法?)
例4已知方程2x2+kx-9=0的一個(gè)根是-3,求另一根及k的值。
變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.
三、課堂小結(jié)
1、根與系數(shù)的關(guān)系。
2、根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零。
四、作業(yè)布置
1、不解方程,寫出下列方程的兩根和與兩根積。
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2、已知方程x2-3x+m=0的一個(gè)根為1,求另一根及m的值。
3、已知方程x2+bx+6=0的一個(gè)根為-2,求另一根及b的值
初中數(shù)學(xué)優(yōu)秀教案 5
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?
反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中
可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;通過(guò)具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):
知識(shí)與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
過(guò)程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
情感與態(tài)度目標(biāo)
1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過(guò)程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證
本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過(guò)實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)
但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;
(2)從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程;
(3)利用探索,研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過(guò)程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。
第一環(huán)節(jié):情境引入;
第二環(huán)節(jié):合作探究;
第三環(huán)節(jié):小試牛刀;
第四環(huán)節(jié):登高望遠(yuǎn);
第五環(huán)節(jié):鞏固提高;
第六環(huán)節(jié):交流小結(jié);
第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:
1.直角三角形中,三邊長(zhǎng)度之間滿足什么樣的關(guān)系?
2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?
意圖:
通過(guò)情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問(wèn)題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng)
、5,12,13;
②7,24,25;
、8,15,17;并回答這樣兩個(gè)問(wèn)題:
1.這三組數(shù)都滿足嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。
意圖:
通過(guò)學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng),滿足,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過(guò)學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):
、5,12,13滿足,可以構(gòu)成直角三角形;
、7,24,25滿足,可以構(gòu)成直角三角形;
、8,15,17滿足,可以構(gòu)成直角三角形。
從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng),滿足,那么這個(gè)三角形是直角三角形
內(nèi)容2:說(shuō)理
提問(wèn):有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說(shuō)服力的'理由嗎?
意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過(guò)說(shuō)理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:
如果一個(gè)三角形的三邊長(zhǎng),滿足,那么這個(gè)三角形是直角三角形滿足的三個(gè)正整數(shù),稱為勾股數(shù)。
注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說(shuō)理,有條件的班級(jí),還可利用幾何畫板動(dòng)畫演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。
活動(dòng)3:反思總結(jié)
提問(wèn):
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?
4.通過(guò)今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過(guò)程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說(shuō)明理由。
、9,12,15;
、15,36,39;
③12,35,36;
、12,18,22
解答:①②
2.一個(gè)三角形的三邊長(zhǎng)分別是,則這個(gè)三角形的面積是( )
A 250 B 150 C 200 D不能確定
解答:B
3.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,(圖1)
得到的三角形是( )
A直角三角形B銳角三角形
C鈍角三角形D不能確定
解答:A
意圖:
通過(guò)練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用
效果
每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個(gè)零件的形狀,按規(guī)定這個(gè)零件中都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸,這個(gè)零件符合要求嗎?
解答:符合要求
2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫出相應(yīng)的圖形
AB=240海里,BC=70海里,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= =即△ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問(wèn)題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語(yǔ)言表達(dá)清楚解決問(wèn)題的過(guò)程即可;利用三角形三邊數(shù)量關(guān)系判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將作適當(dāng)變形( ),以便于計(jì)算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.在正方形ABCD中,AB=4,AE=2,DF=1,圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.哪些是直角三角形,哪些不是,說(shuō)說(shuō)你的理由?
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問(wèn)題時(shí),考慮問(wèn)題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問(wèn)題。
效果:
學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說(shuō)明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容
、贂(huì)利用三角形三邊數(shù)量關(guān)系判斷一個(gè)三角形是直角三角形;
、跐M足的三個(gè)正整數(shù),稱為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:
、贁(shù)學(xué)是源于生活又服務(wù)于生活的;
、跀(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;
、劾萌切稳厰(shù)量關(guān)系判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將作適當(dāng)變形,便于計(jì)算。
意圖:
鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng),滿足,是否能得到這個(gè)三角形是直角三角形的問(wèn)題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識(shí)解決實(shí)際問(wèn)題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。
4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書設(shè)計(jì)
能得到直角三角形嗎
情景引入小試牛刀:登高望遠(yuǎn)
初中數(shù)學(xué)優(yōu)秀教案 6
教學(xué)目的
1、使學(xué)生了解無(wú)理數(shù)和實(shí)數(shù)的概念,掌握實(shí)數(shù)的分類,會(huì)準(zhǔn)確判斷一個(gè)數(shù)是有理數(shù)還是無(wú)理數(shù)。
2、使學(xué)生能了解實(shí)數(shù)絕對(duì)值的意義。
3、使學(xué)生能了解數(shù)軸上的點(diǎn)具有一一對(duì)應(yīng)關(guān)系。
4、由實(shí)數(shù)的'分類,滲透數(shù)學(xué)分類的思想。
5、由實(shí)數(shù)與數(shù)軸的一一對(duì)應(yīng),滲透數(shù)形結(jié)合的思想。
教學(xué)分析
重點(diǎn):無(wú)理數(shù)及實(shí)數(shù)的概念。
難點(diǎn):有理數(shù)與無(wú)理數(shù)的區(qū)別,點(diǎn)與數(shù)的一一對(duì)應(yīng)。
教學(xué)過(guò)程
一、復(fù)習(xí)
1、什么叫有理數(shù)?
2、有理數(shù)可以如何分類?
。ò炊x分與按大小分。)
二、新授
1、無(wú)理數(shù)定義:無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù)。
判斷:無(wú)限小數(shù)都是無(wú)理數(shù);無(wú)理數(shù)都是無(wú)限小數(shù);帶根號(hào)的數(shù)都是無(wú)理數(shù)。
2、實(shí)數(shù)的定義:有理數(shù)與無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。
3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。
除了按定義還能按大小寫出列表。
4、實(shí)數(shù)的相反數(shù):
5、實(shí)數(shù)的絕對(duì)值:
6、實(shí)數(shù)的運(yùn)算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
(1)任何實(shí)數(shù)的偶次冪是正實(shí)數(shù)。()
(2)在實(shí)數(shù)范圍內(nèi),若| x|=|y|則x=y。()
。3)0是最小的實(shí)數(shù)。()
。4)0是絕對(duì)值最小的實(shí)數(shù)。()
解:略
三、練習(xí)
P148練習(xí):3、4、5、6。
四、小結(jié)
1、今天我們學(xué)習(xí)了實(shí)數(shù),請(qǐng)同學(xué)們首先要清楚,實(shí)數(shù)是如何定義的,它與有理數(shù)是怎樣的關(guān)系,二是對(duì)實(shí)數(shù)兩種不同的分類要清楚。
2、要對(duì)應(yīng)有理數(shù)的相反數(shù)與絕對(duì)值定義及運(yùn)算律和運(yùn)算性質(zhì),來(lái)理解在實(shí)數(shù)中的運(yùn)用。
五、作業(yè)
1、P150習(xí)題A:3。
2、基礎(chǔ)訓(xùn)練:同步練習(xí)1。
初中數(shù)學(xué)優(yōu)秀教案 7
知識(shí)點(diǎn):
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標(biāo):
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。
考查重難點(diǎn)與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的`分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過(guò)程:
因式分解知識(shí)點(diǎn)
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:
(1)提公因式法
如多項(xiàng)式
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式, m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。
。2)運(yùn)用公式法,即用
寫出結(jié)果。
。3)十字相乘法
對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式 尋找滿足ab=q,a+b=p的a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。
。5)求根公式法:如果有兩個(gè)根X1,X2,那么
2、教學(xué)實(shí)例:學(xué)案示例
3、課堂練習(xí):學(xué)案作業(yè)
4、課堂:
5、板書:
6、課堂作業(yè):學(xué)案作業(yè)
7、教學(xué)反思:
初中數(shù)學(xué)優(yōu)秀教案 8
教學(xué)目標(biāo):
1、知識(shí)與技能:使學(xué)生經(jīng)歷相似多邊形概念的形成過(guò)程,了解相似多邊形的定義,并能根據(jù)定義判斷兩個(gè)多邊形是否相似。
2、過(guò)程與方法:在探索相似多邊形本質(zhì)特征的過(guò)程中,進(jìn)一步發(fā)展學(xué)生歸納、類比、反思、交流等方面的能力,體會(huì)反例的作用。
3、情感態(tài)度與價(jià)值觀:通過(guò)觀察、推斷得到數(shù)學(xué)猜想、獲得數(shù)學(xué)結(jié)論的過(guò)程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿了探索性和創(chuàng)造性。
教學(xué)重點(diǎn):探索相似多邊形的定義過(guò)程,以及用定義去判斷兩個(gè)多邊形是否相似。
教學(xué)難點(diǎn):探索相似多邊形的定義過(guò)程。
教學(xué)過(guò)程:
(一)創(chuàng)設(shè)情景,導(dǎo)入新課。(3分鐘)
由于學(xué)生已經(jīng)學(xué)習(xí)了形狀相同的圖形,在這里我向?qū)W生展示一組圖片(課件),引導(dǎo)學(xué)生從中找出形狀相同的圖形。學(xué)生回答后,利用課件演示抽象出多邊形。
大多數(shù)學(xué)生可能會(huì)指出黑板邊框的內(nèi)外邊緣所圍成的矩形的形狀也相同。我緊接著創(chuàng)設(shè)懸念:這兩個(gè)矩形的形狀相同嗎?
利用課件演示,把內(nèi)邊緣的矩形的長(zhǎng)和寬按相同比例放大后不能與外邊緣矩形重合。此時(shí)的學(xué)生肯定倍感疑惑,急切想探個(gè)究竟。教師順勢(shì)導(dǎo)入新課:
那么滿足什么條件的多邊形才是形狀相同的多邊形呢?今天我們一起來(lái)探究相似多邊形。
(二)自主學(xué)習(xí),合作探究。(15分鐘)
1、動(dòng)手實(shí)驗(yàn),初步感知定義。
課前發(fā)給每個(gè)小組一套相似多邊形的圖片(其中包括兩個(gè)相似三角形、一個(gè)等邊三角形、兩個(gè)相似四邊形),組織學(xué)生按形狀相同給多邊形找朋友。然后引導(dǎo)學(xué)生以小組為單位從中選擇一組多邊形探究解決下面問(wèn)題。
(1)在這兩個(gè)多邊形中,是否有相等的內(nèi)角?設(shè)法驗(yàn)證你的猜想。
(2)在這兩個(gè)多邊形中,相等的內(nèi)角的兩邊是否成比例?
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生分組討論、探究、驗(yàn)證、交流,并進(jìn)行演示,著重引導(dǎo)學(xué)生說(shuō)明驗(yàn)證的方法,無(wú)論學(xué)生提出什么樣的驗(yàn)證方式,只要有道理,教師都應(yīng)給予充分肯定和鼓勵(lì)。)
對(duì)相等內(nèi)角的兩邊是否對(duì)應(yīng)成比例這個(gè)問(wèn)題學(xué)生可能會(huì)感到困難,由于學(xué)生已經(jīng)學(xué)習(xí)了成比例線段,我會(huì)利用這一點(diǎn)啟發(fā)學(xué)生運(yùn)用測(cè)量、計(jì)算的方法解決這一難點(diǎn)。
利用多媒體演示形狀相同的六邊形的對(duì)應(yīng)角相等,然后讓學(xué)生觀察計(jì)算得到,相等的內(nèi)角的兩邊成比例。然后給出對(duì)應(yīng)角、對(duì)應(yīng)邊的概念,引導(dǎo)學(xué)生明確對(duì)應(yīng)角、對(duì)應(yīng)邊的含義。
2、特例探究,進(jìn)一步體驗(yàn)定義。 (課件出示問(wèn)題)
例:下列每組圖形形狀相同,它們的對(duì)應(yīng)角有怎樣的關(guān)系?對(duì)應(yīng)邊呢?
(1)三角形ABC與正三角形DEF;
(2)正方形ABCD與正方形EFGH.
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生通過(guò)自主探究解決這個(gè)問(wèn)題后進(jìn)行適當(dāng)引申,使學(xué)生認(rèn)識(shí)到:邊數(shù)相同的正多邊形都相似。)
3、歸納總結(jié),形成概念。
教師設(shè)問(wèn):回憶一下我們剛才探究過(guò)的每一組多邊形,你能發(fā)現(xiàn)它們的共同特點(diǎn)嗎?(課件出示四組圖形)
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生嘗試用自己的語(yǔ)言敘述定義,教師給予規(guī)范并板書。隨即給出相似多邊形的表示方法和相似比的概念,接下來(lái)引導(dǎo)學(xué)生回憶表示全等三角形時(shí)應(yīng)注意的問(wèn)題,也就是要把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,然后引導(dǎo)學(xué)生用類比的方法得到:在記兩個(gè)多邊形相似時(shí)也要把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上,說(shuō)明相似比與兩個(gè)多邊形敘述的順序有關(guān)。)
4、深化理解。
(1)滿足什么條件的兩個(gè)多邊形相似?
(2)如果兩個(gè)多邊形相似,那么它們的對(duì)應(yīng)角和對(duì)應(yīng)邊有什么關(guān)系?
(設(shè)計(jì)意圖:使學(xué)生認(rèn)識(shí)到:相似多邊形的定義既是最基本最重要的判定方法,也是最本質(zhì)最重要的特征。)
(三)辨析研討,知識(shí)深化。(14分鐘)
1、議一議:
(1)觀察下面兩組圖形,圖(1)中的兩個(gè)圖形相似嗎?為什么?圖(2)中的兩個(gè)圖形呢?與同桌交流。 (課件出示圖形)
(2)如果兩個(gè)多邊形不相似,那么它們的各角可能對(duì)應(yīng)相等嗎?它們的各邊可能對(duì)應(yīng)成比例嗎?
(3)如果兩個(gè)菱形相似,那么他們需要滿足什么條件?
(設(shè)計(jì)意圖:為了培養(yǎng)學(xué)生從多角度理解問(wèn)題,我運(yùn)用教材中兩個(gè)典型的反例,引導(dǎo)學(xué)生討論探究,使學(xué)生認(rèn)識(shí)到:不相似的兩個(gè)多邊形的角也可能對(duì)應(yīng)相等,不相似的兩個(gè)多邊形的邊也可能對(duì)應(yīng)成比例;反過(guò)來(lái)說(shuō):只具備各角分別對(duì)應(yīng)相等或各邊分別對(duì)應(yīng)成比例的多邊形不一定相似。進(jìn)而使學(xué)生明確:判斷兩個(gè)多邊形形相似,各角分別對(duì)應(yīng)相等、各邊分別對(duì)應(yīng)成比例這兩個(gè)條件缺一不可。通過(guò)正反兩方面的對(duì)照,能使學(xué)生更深刻地理解相似多邊形的定義。這是個(gè)易錯(cuò)點(diǎn),教學(xué)時(shí)應(yīng)注意給學(xué)生留出充分思考交流的時(shí)間。另外在設(shè)計(jì)時(shí),我在教材原有內(nèi)容的基礎(chǔ)上添加了菱形的情況(見課件),引導(dǎo)學(xué)生探索兩個(gè)菱形相似需要滿足什么樣的條件。)
2、做一做。
設(shè)問(wèn):學(xué)到這兒,你認(rèn)為黑板邊框內(nèi)外邊緣所成的這兩個(gè)矩形相似嗎?請(qǐng)你計(jì)算說(shuō)明。課件出示問(wèn)題:
一塊長(zhǎng)3m、寬1.5m的矩形黑板,鑲在其外圍的`木質(zhì)邊框?qū)?.5cm.邊框的內(nèi)外邊緣所成的矩形相似嗎?為什么?(學(xué)生自主探索解決)
(設(shè)計(jì)意圖:為了滿足學(xué)生多樣化的學(xué)習(xí)需求,使不同的學(xué)生都能獲得令自己滿意的數(shù)學(xué)知識(shí),我把此題進(jìn)行了適當(dāng)?shù)耐卣购脱由臁?
拓展一:如果將黑板的上邊框去掉,其他條件不變。
那么邊框內(nèi)外邊緣所成的矩形相似嗎?為什么?
拓展二:在拓展一的基礎(chǔ)上,如果矩形的長(zhǎng)為2a,寬為a,
邊框的寬度為x。那么邊框內(nèi)外邊緣所成的矩形還相似嗎?為什么?
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生討論計(jì)算,解決問(wèn)題。目的是讓學(xué)生明確并不是所有相互套疊的兩個(gè)矩形都不相似。使學(xué)生初步認(rèn)識(shí)到直觀有時(shí)是不可靠的,研究數(shù)學(xué)問(wèn)題需要在提出猜想的基礎(chǔ)上進(jìn)行推理和計(jì)算,幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng)。)
(四)學(xué)以致用,鞏固提高。(6分鐘)
慧眼識(shí)金!
1、判斷下列各題是否正確:
(1)所有的矩形都相似。
(2)所有的正方形都相似。
(3)對(duì)應(yīng)邊成比例的兩個(gè)多邊形相似 問(wèn)題解決!
2、下圖中兩面國(guó)旗相似,則它們對(duì)應(yīng)邊的比為 。
3、如圖,兩個(gè)正六邊形廣場(chǎng)磚的邊長(zhǎng)分別為a和b,它們相似嗎?為什么?
(課件出示圖形)
(設(shè)計(jì)意圖:為了體現(xiàn)相似圖形在生活中的廣泛應(yīng)用,我以實(shí)際問(wèn)題為背景設(shè)計(jì)練習(xí)題。這是一組基礎(chǔ)題,意在鞏固相似多邊形的定義以及相似比的計(jì)算。)
(五)課堂小結(jié),知識(shí)升華。(2分鐘)
師生共同完成。
(設(shè)計(jì)意圖:教師首先肯定學(xué)生在課堂中大膽的猜想和思維的積極性,然后引導(dǎo)學(xué)生從幾方面進(jìn)行反思:我學(xué)會(huì)了什么,我最感興趣的是,我發(fā)現(xiàn)了什么,我能解決,我獲得的數(shù)學(xué)方法是幫助學(xué)生構(gòu)成新的知識(shí)網(wǎng)絡(luò),形成技能。)
(六)布置作業(yè):
1、 P113 習(xí)題第3題
2、畫一畫:在方格紙中畫出兩個(gè)相似多邊形。
3、探究題:小林在一塊長(zhǎng)為6m,寬為4m一邊靠墻的矩形的小花園周圍,栽種了一種蝴蝶花裝飾,這種蝴蝶花的邊框?qū)挒?0cm,邊框內(nèi)外邊緣所圍成的兩個(gè)矩形相似嗎?第1、2題作為必做題;第3題作為選做題,是對(duì)課堂上做一做的再次拓展和延伸:當(dāng)矩形的長(zhǎng)與寬的比不再是2:1時(shí),邊框內(nèi)外邊緣所圍成的兩個(gè)矩形還相似嗎?
板書設(shè) 4、相似多邊形
定義: 各角對(duì)應(yīng)相等,
各邊對(duì)應(yīng)成比例
表示方法:∽
相似比:
初中數(shù)學(xué)優(yōu)秀教案 9
一、課題引入
為了讓學(xué)生更好地理解正數(shù)與負(fù)數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來(lái)看,微積分的基礎(chǔ)是實(shí)數(shù)理論,實(shí)數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅(jiān)實(shí)的基礎(chǔ).
對(duì)于“數(shù)的發(fā)展”(也即“數(shù)的擴(kuò)充”),有著兩種不同的認(rèn)知體系.一是數(shù)的自然擴(kuò)充過(guò)程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對(duì)數(shù)的認(rèn)識(shí)的歷史發(fā)展進(jìn)程;另一是數(shù)的邏輯擴(kuò)充過(guò)程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.
二、課題研究
在實(shí)際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實(shí)際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實(shí)際意義是不同的.
為了準(zhǔn)確表達(dá)諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過(guò)的正整數(shù)、正分?jǐn)?shù)、零,是不夠的如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的收入與支出是“意義相反”的兩回事,是不能用同一個(gè)數(shù)來(lái)表達(dá)的因此,為了準(zhǔn)確表達(dá)支出5000元,就有必要引入了一種新數(shù)—負(fù)數(shù).
我們把所學(xué)過(guò)的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個(gè)“+”號(hào),比如在5的前面添加一個(gè)“+”號(hào)就成了“+5”,把“+5”稱為一個(gè)正數(shù),讀作“正5”.
在正數(shù)的前面添加一個(gè)“-”號(hào),比如在5的前面添加一個(gè)“-”號(hào),就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負(fù)數(shù).“-5”讀作“負(fù)5”,“-5000”讀作“負(fù)5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時(shí)“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個(gè)數(shù)量就有了不同的表達(dá)方式.
利用正數(shù)與負(fù)數(shù)可以準(zhǔn)確地表達(dá)或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個(gè)機(jī)器零件的實(shí)際尺寸比設(shè)計(jì)尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個(gè)機(jī)器零件的實(shí)際尺寸比設(shè)計(jì)尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊(duì)贏了乙隊(duì)2個(gè)球,那么可以把甲隊(duì)的凈勝球數(shù)記作“+2”,把乙隊(duì)的凈勝球數(shù)記作“-2”.
借助實(shí)際例子能夠讓學(xué)生較好地理解為什么要引入負(fù)數(shù),認(rèn)識(shí)到負(fù)數(shù)是為了有效表達(dá)與實(shí)際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來(lái)的一種“新數(shù)”.
三、鞏固練習(xí)
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺(tái)空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對(duì)“具有相反意義的量”,可以用正數(shù)或負(fù)數(shù)來(lái)表示.一般來(lái)說(shuō),把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來(lái)表示;而與之相對(duì)的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負(fù)數(shù)來(lái)表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時(shí)游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時(shí)游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場(chǎng)開盤時(shí),某支股票的開盤價(jià)為18.18元,收盤時(shí)下跌了2.11元;周二到周五開盤時(shí)的價(jià)格與前一天收盤價(jià)相比的漲跌情況及當(dāng)天的收盤價(jià)與開盤價(jià)的漲跌情況如下表:?jiǎn)挝唬涸?/p>
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當(dāng)日收盤價(jià)
試在表中填寫周二到周五該股票的收盤價(jià).
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實(shí)際意義是“周二該股票的開盤價(jià)比周一的收盤價(jià)高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時(shí)的收盤價(jià)比當(dāng)天的開盤價(jià)降低了0.23元”.
因此,這五天該股票的開盤價(jià)與收盤價(jià)分別應(yīng)該按如下的方式進(jìn)行計(jì)算:
周一該股票的收盤價(jià)是18.18-2.11=16.07元;周二該股票的收盤價(jià)為16.07+0.16-0.23=16.00元;周三該股票的收盤價(jià)為16.00+0.25-1.32=14.93元;周四的該股票的收盤價(jià)為14.93+0.78-0.67=15.04元;周五該股票的收盤價(jià)為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊(duì)以主客場(chǎng)的形式進(jìn)行雙循環(huán)比賽,每?jī)申?duì)之間都比賽兩場(chǎng),下表是這三支球隊(duì)的比賽成績(jī),其中左欄表示主隊(duì),上行表示客隊(duì),比分中前后兩數(shù)分別是主客隊(duì)的進(jìn)球數(shù),例如3∶2表示主隊(duì)進(jìn)3球客隊(duì)進(jìn)2球.
初中數(shù)學(xué)優(yōu)秀教案 10
學(xué)習(xí)方式:
從具體問(wèn)題情景中探索體會(huì)合并同類項(xiàng)的含義。
逆用乘法分配律探求合并同類項(xiàng)法則。
通過(guò)多角度的練習(xí)辨別同類項(xiàng),加 深對(duì)概念的理解,培養(yǎng)思維的嚴(yán)密性。
教學(xué)目標(biāo):
1、在具體情境中理解、掌握同類項(xiàng)的定義;
2、在具體情境中, 讓學(xué)生了解合并同類項(xiàng)的法則,能進(jìn)行同類項(xiàng)的合并。
3、能運(yùn)用合并同類項(xiàng)化簡(jiǎn)多項(xiàng)式,并根據(jù)所給字母的值,求多項(xiàng)式的值。
4、通過(guò)“合并同類項(xiàng)”的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生的運(yùn)算能力。
教學(xué)的重點(diǎn)、難點(diǎn)和疑點(diǎn)
1、重點(diǎn):同類項(xiàng)的概念,合并同類項(xiàng)的法則。
2、難點(diǎn):理解同類項(xiàng)的概念中所含字母相同,且相同字母的次數(shù)也相同的含義。
3、疑點(diǎn):同類項(xiàng)與同次項(xiàng)的區(qū)別。
教具準(zhǔn)備
投影儀(電腦)、自制膠片
教學(xué)過(guò)程:
提出問(wèn)題
創(chuàng)設(shè)情景 (出示投影)
如圖的長(zhǎng)方形由兩個(gè)小長(zhǎng)方形組成,求這個(gè)長(zhǎng)方形的面積。
、佼(dāng)學(xué)生列出代數(shù)式 8n+5n時(shí),可引導(dǎo)學(xué)生是否還有其他表示方法,啟發(fā)學(xué)生得出:
。8+5)n
②接著引導(dǎo)學(xué)生寫出等式:
8n+5n=(8+5)n=13n
啟發(fā)學(xué)生觀察上式是怎樣的一種變化;
它類似于我們前面學(xué)過(guò)的什么運(yùn)算律
為什么8n與5n可以合并成一項(xiàng)(組織學(xué)生充分
討論,從而引出同類項(xiàng)的概念)
、弁愴(xiàng)的概念
舉出一些具有代表性的同類項(xiàng)的實(shí)際例子。
如:-7a2b , 2a2b ;
8n , 5n ;
3x2, -x2
引導(dǎo)學(xué)生觀察上面給出的幾組代數(shù)式具有什么共同特點(diǎn):
①所含的字母相同
、谙嗤帜傅闹笖(shù)也相同
教師順勢(shì)提出同類項(xiàng)的概念
強(qiáng)調(diào)同類項(xiàng)必須滿足以上兩條
、芙Y(jié)合長(zhǎng)方形面積問(wèn)題,引出合并同類項(xiàng)的.概念:把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。 學(xué)生觀察,思考
討論交流
(反例鞏固) 出示問(wèn)題;
x與y,
a2b與ab2,
。3pa與3pa
abc與ac,
a2和a3 是不是同類項(xiàng)
。ńo學(xué)生留下足夠的思考時(shí)間,引導(dǎo)學(xué)生緊緊結(jié)合同類項(xiàng)的兩個(gè)條件進(jìn)行判斷)
其中:a2b與ab2可讓學(xué)生充分討論交流。
。ń處煆(qiáng)調(diào)“必須是相同字母的指數(shù)相同”這句話的含義,從而分清同類項(xiàng)與同次項(xiàng)的區(qū)別)
。ㄒ龑(dǎo)學(xué)生題后反思,同類項(xiàng)與它們的系數(shù)無(wú)關(guān),只與所含的字母及字母的指數(shù)有關(guān))。
緊扣定義
加以判別
例1 根據(jù)乘法分配律合并同類項(xiàng)
。1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3
。ń處煆(qiáng)調(diào)乘法分配律的逆運(yùn)用)
(學(xué)生板書完畢后,教師引導(dǎo)學(xué)生觀察合并的前后發(fā)生了什么變化?其中系 數(shù)怎樣變化的?字母及字母的指數(shù)又怎樣變化了)
由此引導(dǎo)學(xué)生總結(jié)出合并同類項(xiàng)的法則:
在合并同類項(xiàng)時(shí),只把同類項(xiàng)的系數(shù)相加減,字母和字母的指數(shù)不變。
學(xué)生思考
解答(找二生板演其他學(xué)生獨(dú)立寫出過(guò)程)
總結(jié)法則
可根據(jù)情況適當(dāng)復(fù)習(xí)關(guān)于乘法分配律的有關(guān)知識(shí)
通過(guò)上面的實(shí)例,學(xué)生對(duì)怎樣合并同類項(xiàng)的問(wèn)題已有較深刻的印象,但還不能用完整的數(shù)學(xué)語(yǔ)言將其敘述出來(lái),教師要積極引導(dǎo),讓學(xué)生動(dòng)腦思考。
應(yīng)用法則
例2,合 并同類項(xiàng)
、3a+2b-5a-b
②-4ab+8-2b2-9ab-8
給學(xué)生留有足夠的獨(dú)立的思考時(shí)間
找二生到黑板上板演。
學(xué)生 板演后,教師組織 學(xué)生交流評(píng)價(jià),根據(jù)出現(xiàn)的問(wèn)題,作點(diǎn)拔,強(qiáng)調(diào)。
強(qiáng)調(diào):合并同類項(xiàng)的過(guò)程實(shí)質(zhì)上就是同類項(xiàng)的系數(shù)相加減的過(guò)程,在系數(shù)相加時(shí),不要遺漏符號(hào),字母和字母的指數(shù)都不變。
教師不給任何提示
學(xué)生在練習(xí)本上完成,然后同桌同學(xué)互相交換評(píng)判。
。ǘ胶诎迳习逖荩
變式
應(yīng)用 補(bǔ)充例題
例3,求代數(shù)式的值
、2x2-5x+x2+4x-3 x2-2 其中x=
②-3 x2+5x-0.5 x2+x-1 其中x=2
出示 例題后,教師不要給任何提示,先讓學(xué)生獨(dú)立思考。
部分學(xué)生會(huì)直接把x= 代入式中去計(jì)算,出現(xiàn)這一情況后,教師可積極引導(dǎo)。
問(wèn):還有沒有其 他方法?學(xué)生仔細(xì)觀察后不難發(fā)現(xiàn)先合并化簡(jiǎn)后,再代入求值,此時(shí)教師可提出讓學(xué)生對(duì)比分析哪種方法簡(jiǎn)便。從而強(qiáng)調(diào),先化簡(jiǎn)再求值會(huì)使運(yùn)算變得簡(jiǎn)便。
獨(dú)立完成
分析比較
尋求簡(jiǎn)便方法
隨堂
練習(xí) 1、合并同類項(xiàng)
①3y+ y=__________
、3b-3a2+1+a3-2b=____ _______
③2y+6y+2xy-5=_____________
2、求代數(shù)式的值
8 p2-7q+6q-7p2-7
其中p=3 q=3
練習(xí)交流合作
教師可根據(jù)情況適當(dāng)補(bǔ)充
小結(jié) 今天你學(xué)會(huì)了哪些知識(shí)?獲得了哪些方法,
有什么體會(huì)? 自己總結(jié)
作業(yè) 教材課后習(xí)題
初中數(shù)學(xué)優(yōu)秀教案 11
教學(xué)目的:
1、在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步鞏固形如ax+b=c、ax-b=c的方程的解法,同時(shí)理解并掌握形如ax÷b=c的方程的解法,會(huì)列上述方程解決兩步計(jì)算的實(shí)際問(wèn)題。
2、提高分析數(shù)量關(guān)系的能力,培養(yǎng)學(xué)生思維的靈活性。
3、在積極參與數(shù)學(xué)活動(dòng)的過(guò)程中,樹立學(xué)好數(shù)學(xué)的信心。
教學(xué)重點(diǎn)、難點(diǎn):
引導(dǎo)學(xué)生獨(dú)立分析問(wèn)題,找出題目中的等量關(guān)系。
教學(xué)對(duì)策:
在積極參與數(shù)學(xué)活動(dòng)的過(guò)程中,樹立學(xué)好數(shù)學(xué)的信心。
教學(xué)準(zhǔn)備:
教學(xué)光盤
教學(xué)過(guò)程:
一、復(fù)習(xí)準(zhǔn)備
1、解方程(練習(xí)一第6題的第1、3小題)
4x+12=50 2.3x-1.02=0.36
學(xué)生獨(dú)立完成,再指名學(xué)生板演并講評(píng),集體訂正。
二、嘗試練習(xí)
師:剛才的兩道題同學(xué)們完成得很好,這道題你們還能自己解決嗎?試試看。
出示:30x÷2=360
學(xué)生獨(dú)立嘗試完成,全班交流。
指名學(xué)生說(shuō)一說(shuō),解這個(gè)方程是第一步需要做什么?這樣做依據(jù)了等式的`什么性質(zhì)?
三、鞏固練習(xí)
1、出示練習(xí)一第7題。
(1)分析數(shù)量關(guān)系
提問(wèn):誰(shuí)來(lái)說(shuō)說(shuō)三角形的面積公式是怎樣的?根據(jù)學(xué)生回答板書:S=ah÷2。聯(lián)系這個(gè)公式你能找出數(shù)量之間的相等關(guān)系嗎?(生獨(dú)立思考后在小組內(nèi)交流)指名口答。你覺得在這些數(shù)量關(guān)系中,哪一個(gè)等量關(guān)系適合列方程?根據(jù)這個(gè)數(shù)量關(guān)系我們可以列出怎樣的方程?板書:1.3x÷2=0.39。
第⑵題生獨(dú)立思考并列出方程,在小組內(nèi)說(shuō)說(shuō)自己的思考過(guò)程后全班交流。板書:3x+18=19.8。
(2)學(xué)生獨(dú)立計(jì)算,并檢驗(yàn)答案是否正確,全班核對(duì)。
小結(jié):在一個(gè)實(shí)際問(wèn)題中,可能會(huì)有幾個(gè)不同的等量關(guān)系,我們應(yīng)該選擇合適的等量關(guān)系來(lái)列方程。
2、練習(xí)一第8題。
學(xué)生讀題后可用自己喜歡的方法將與楊樹和松樹有關(guān)的信息分別列表整理(如列表,作標(biāo)記等)
學(xué)生獨(dú)立解決后再說(shuō)說(shuō)數(shù)量之間有怎樣的數(shù)量關(guān)系,是根據(jù)什么樣的數(shù)量關(guān)系列出的方程,最后核對(duì)解方程的過(guò)程。(提示學(xué)生可從得數(shù)的合理性來(lái)初步檢驗(yàn))
3、練習(xí)一第9題。
學(xué)生獨(dú)立思考,指名分析數(shù)量關(guān)系,教師結(jié)合學(xué)生回答畫出線段圖幫助學(xué)生理解題意。
學(xué)生獨(dú)立解方程再集體訂正。
4、練習(xí)一第10題。
教師簡(jiǎn)單介紹相關(guān)天文知識(shí)后,學(xué)生獨(dú)立解答,然后及時(shí)交流,教師及時(shí)講評(píng)。
5、練習(xí)一第11題。
學(xué)生讀題后教師提問(wèn):在本題中出現(xiàn)了兩個(gè)問(wèn)題,那么我們?cè)趯懺O(shè)句時(shí)要注意什么?(提示學(xué)生用不同的字母分別表示小亮出生時(shí)的身高和體重)
學(xué)生獨(dú)立解決,集體核對(duì)。結(jié)合學(xué)生板演情況進(jìn)行講評(píng),進(jìn)一步規(guī)范學(xué)生的書寫格式。
6、練習(xí)一第12題。
提問(wèn):你能看懂這張發(fā)票上所提供的信息嗎?數(shù)量間有怎樣的等量關(guān)系呢
學(xué)生獨(dú)立列方程解答,同桌同學(xué)互相檢查,再集體訂正。
7、練習(xí)一第13題。
學(xué)生閱讀第13題,理解后獨(dú)立解決問(wèn)題,再交流。
教師再補(bǔ)充幾題,如:98.6、212華氏度相當(dāng)于多少攝氏度等。
四、全課小結(jié)
說(shuō)一說(shuō)你這一節(jié)課的學(xué)習(xí)收獲及還有什么問(wèn)題。
五、布置作業(yè)
完成配套習(xí)題。
教后反思:
本課時(shí)是一節(jié)練習(xí)課,練習(xí)目標(biāo)有兩個(gè),一是通過(guò)練習(xí)讓學(xué)生掌握形如ax+b=c和ax-b=c的方程的解法,會(huì)列方程解決兩步計(jì)算的實(shí)際問(wèn)題;二是借助一些對(duì)比練習(xí),讓學(xué)生感受方程的思想方法和價(jià)值。課前,我學(xué)習(xí)了高教導(dǎo)的“課前思考”,在今天的練習(xí)課中補(bǔ)充了兩組題目,讓學(xué)生進(jìn)行對(duì)比練習(xí)。題目是這樣的:(1)果園里有桃樹60棵,比梨樹的3倍少6棵,梨樹有多少棵?(2)果園里有梨樹60棵,比桃樹的3倍少6棵,桃樹有多少棵?課堂上,我先請(qǐng)學(xué)生分析每一題的數(shù)量關(guān)系,然后選擇合適的方法來(lái)解答。學(xué)生們經(jīng)過(guò)分析、比較,發(fā)現(xiàn)類似第1小題這樣的題目適合用方程解,類似第2小題這樣的題目適合用算術(shù)方法解。另一組補(bǔ)充的題目是:(1)王老師買了3個(gè)足球,付了200元,找回8元。每個(gè)足球多少元?(2)水果店運(yùn)進(jìn)5箱蘋果,賣出56千克,還剩34千克。每箱蘋果多少千克?對(duì)于這兩題,我請(qǐng)學(xué)生認(rèn)真分析數(shù)量關(guān)系后用自己喜歡的方法來(lái)解答,而且如果是列方程的話,試著列出不同的方程;如果是用算術(shù)方法解的可以列出不同的算式。課堂上學(xué)生思維活躍,在正確分析數(shù)量關(guān)系后列出了不同的方程或算式。
通過(guò)本節(jié)練習(xí)課,我想教師在教學(xué)中要更多地指導(dǎo)學(xué)生關(guān)注怎樣從一個(gè)個(gè)具體的問(wèn)題情境中分析數(shù)量之間的相等關(guān)系,關(guān)注怎樣根據(jù)數(shù)量關(guān)系列出方程,從而在經(jīng)歷實(shí)際問(wèn)題數(shù)學(xué)化的過(guò)程中,獲得對(duì)用方程解決實(shí)際問(wèn)題策略的體驗(yàn),進(jìn)一步豐富學(xué)生解決問(wèn)題的策略,加深學(xué)生對(duì)方程作為一種重要的數(shù)學(xué)思想方法的理解。
初中數(shù)學(xué)優(yōu)秀教案 12
教學(xué)設(shè)計(jì)思想:本節(jié)安排1課時(shí)講授;影子是生活中常見的現(xiàn)象,教學(xué)中引用太陽(yáng)光照射下的影子種種生活中的實(shí)例,目的是讓學(xué)生體會(huì)影子在生活中的存在,激發(fā)學(xué)習(xí)的興趣。課前布置作業(yè)讓學(xué)生觀察不同時(shí)刻物體影子的變化,親自感受變化的情況,再通過(guò)教師講授逐步加深對(duì)投影相關(guān)概念的理解,并掌握其應(yīng)用。
教學(xué)目標(biāo):
1.知識(shí)與技能
經(jīng)歷實(shí)踐、探索的過(guò)程,知道平行投影、正投影的含義;
能夠確定物體在太陽(yáng)光下的影子的特征;
知道在不同時(shí)刻物體在太陽(yáng)光下形成的影子的大小和方向是不同的。
2.過(guò)程與方法
通過(guò)觀察、想象、實(shí)踐形成一定的空間想象能力,發(fā)展空間觀念;
探索不同時(shí)刻不同物體的影子的變化規(guī)律:影子長(zhǎng)的比等于物體高度的比。
3.情感、態(tài)度與價(jià)值觀
通過(guò)理論研究自然現(xiàn)象,引發(fā)對(duì)大自然和社會(huì)生活探索的欲望,提高學(xué)習(xí)興趣,增進(jìn)數(shù)學(xué)的應(yīng)用意識(shí)。
教學(xué)重點(diǎn):理解平行投影的含義。
教學(xué)難點(diǎn):通過(guò)對(duì)平行投影的認(rèn)識(shí)進(jìn)行物體與投影之間的相互轉(zhuǎn)化。
教學(xué)方法:?jiǎn)l(fā)式。
教學(xué)安排:1課時(shí)。
教學(xué)媒體:幻燈片。
教學(xué)過(guò)程:
課前準(zhǔn)備:讓學(xué)生在課前觀察物體在陽(yáng)光下的影子,自己總結(jié)出一些結(jié)論。
一、創(chuàng)設(shè)情景
問(wèn)題1:
師:請(qǐng)看這幅圖片,哪位同學(xué)知道這是什么?(提出問(wèn)題,激發(fā)學(xué)生的興趣)
教師陳述:日晷是我國(guó)古代利用日影測(cè)定時(shí)刻的儀器,它由“晷面”和“晷針”組成。
當(dāng)太陽(yáng)光照在日晷上時(shí),晷針的影子就會(huì)投向晷面。隨著時(shí)間的推移,晷針的影子在晷面上慢慢地移動(dòng)。以此來(lái)顯示時(shí)刻。(看下圖)
設(shè)疑激趣:利用古代顯示時(shí)刻的物體來(lái)引起學(xué)生的興趣。
二、引出課題
問(wèn)題2:
師:太陽(yáng)光可看成平行的直線,在陽(yáng)光下,我們經(jīng)?匆娢矬w的影子,那同學(xué)們你們知道影子的長(zhǎng)短和方向在一天中是怎樣變化的嗎?
下面我們來(lái)看幾副圖片:(幻燈顯示)
。1) (2) (3)
上面的三幅圖是在我國(guó)北方某地某天上午不同時(shí)刻的同一位置拍攝的,請(qǐng)根據(jù)樹的影子,判斷拍攝的先后順序,并說(shuō)明理由。
生:通過(guò)這幾天觀察,如果上午觀察物體的影子,都是逐漸變短的一個(gè)過(guò)程,所以拍攝的先后順序是:(3)→(2)→(1)。
師:這位同學(xué)回答的很正確;但是哪位同學(xué)能解釋一下呢?
生:上午太陽(yáng)從東方地平線上升起,逐漸升高,這里我們把太陽(yáng)光線看成平行的直線,根據(jù)以前我們學(xué)過(guò)的幾何知識(shí),通過(guò)畫圖,顯而易見影子隨著太陽(yáng)的升高逐漸變短的。
師:回答的很好;根據(jù)上面的總結(jié),我們觀看下面的圖片,觀察有什么變化?
在我國(guó)北方地區(qū),人們居住的房屋窗戶大多是朝南的,中午某時(shí)刻室內(nèi)的窗影在一年四季里會(huì)有什么變化呢?
學(xué)生相互討論,交流。
生:夏天的時(shí)候影子是最短的,冬天是最長(zhǎng)的,春秋次之。
活動(dòng):學(xué)生有豐富的關(guān)于影子的生活經(jīng)驗(yàn),讓他們結(jié)合經(jīng)驗(yàn)想象自己的影子從早到晚是如何變化的(包括大小和方向)?并叫三個(gè)學(xué)生代表太陽(yáng)、物體、影子,模擬太陽(yáng)東升西落。得出結(jié)論:大——小——大;西——北偏西——正北——北偏東——東。
教師總結(jié):物體在光線的照射下,會(huì)在地面或墻面上留下它的影子,這種現(xiàn)象就是投影(projection)。
太陽(yáng)的光線可看做平行線的,像這樣的光線照射在物體上,所形成的投影叫做平行投影。光線是投影線,地面或墻面是投影面。
如上圖,用一束平行光線豎直照射水平放置的三角尺上,投影線、三角尺在水平面上的投影是平行投影。在這種平行投影中,光線是豎直照射在水平面上的。像這種平行投影又叫做正投影。
現(xiàn)在大家對(duì)投影有了一定的了解,再看下面這個(gè)圖形,思考問(wèn)題:[
如圖,正方體正面(R面)在V面上的正投影 。
1.R面的正投影是什么圖形?與R面相對(duì)的面的在正投影是什么圖形?
2.Q面的正投影是什么圖形?與Q面相對(duì)的面的正投影是什么圖形?
3.P面及與它相對(duì)的面的正投影分別是什么圖形?
學(xué)生相應(yīng)回答上面的問(wèn)題。
師:我們學(xué)習(xí)了投影的相關(guān)概念,也觀看了許多投影的圖片,那同學(xué)們思考這樣的問(wèn)題:
。1)一個(gè)物體的'正投影是立體圖形還是平面圖形?
。2)點(diǎn)、線段和多邊形的正投影可能分別是什么圖形?
第一問(wèn)顯而易見,教師可以找中下等學(xué)生回答。
第二問(wèn)教師可以通過(guò)課件演示,學(xué)生觀看,回答問(wèn)題。(參看課件:點(diǎn)、線、面的投影)
師生互動(dòng):
例:旗桿直立在A處,它的平行投影如圖所示。
。1)請(qǐng)畫出小明站在B處時(shí)的投影(用線段表示)。并說(shuō)明你這樣畫的理由。
。2)如果小明站在C處,請(qǐng)畫出他的投影(用線段表示),并比較小明站在B、C兩處投影的長(zhǎng)短。
。3)旗桿的高度與它投影長(zhǎng)的比和小明的身高與他投影長(zhǎng)的比有什么關(guān)系?為什么?
學(xué)生在教師的引導(dǎo)下,自主完成這道例題,教師再進(jìn)行講解。
教師總結(jié):一般地,兩個(gè)直立于地面的物體在陽(yáng)光下的投影,或平行或在同一條直線上,兩個(gè)物體、他們的平行投影及過(guò)物體頂端的投影線,分別組成直角三角形,這兩個(gè)三角形相似。
三、練習(xí)
1.大致說(shuō)出我國(guó)北方的確一天中(早晨、中午、傍晚),人在陽(yáng)光下的投影的方向和長(zhǎng)短。
2.下圖是一棵大樹在陽(yáng)光下的投影,請(qǐng)畫出另一棵樹的投影(用線段表示)。
3.結(jié)合地理知識(shí),談?wù)勗谖覈?guó)哪些地區(qū)會(huì)有太陽(yáng)直射現(xiàn)象。這時(shí)人的投影是什么樣的?
四、課堂總結(jié)
板書設(shè)計(jì):
平行投影
一、導(dǎo)入 平行投影
問(wèn)題1: 正投影
二、新授 例:
問(wèn)題2:
三、練習(xí)
投影:
四、總結(jié)
初中數(shù)學(xué)優(yōu)秀教案 13
一、教學(xué)目標(biāo)
知識(shí)目標(biāo):理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達(dá)式.
解決問(wèn)題:能從實(shí)際問(wèn)題中抽象出反比例函數(shù)并確定其表達(dá)式.情感態(tài)度:讓學(xué)生經(jīng)歷從實(shí)際問(wèn)題中抽象出反比例函數(shù)模型的過(guò)程,體會(huì)反比例函數(shù)來(lái)源于實(shí)際.
二、教學(xué)重難點(diǎn)
重點(diǎn):理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.
難點(diǎn):反比例函數(shù)表達(dá)式的確立.
三、教學(xué)過(guò)程
。1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運(yùn)行時(shí)間t(單位:h)的變化而變化;
。2)某住宅小區(qū)要種植一個(gè)面積1000m2的矩形草坪,草坪的長(zhǎng)y(單位:m)隨寬x(單位:m)的變化而變化。
請(qǐng)同學(xué)們寫出上述函數(shù)的表達(dá)式
14631000(2)y= txk可知:形如y=(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=是自變量,y是函數(shù)。
此過(guò)程的目的在于讓學(xué)生從實(shí)際問(wèn)題中抽象出反比例函數(shù)模型的過(guò)程,體會(huì)反比例函數(shù)來(lái)源于實(shí)際.由于是分式,當(dāng)x=0時(shí),分式無(wú)意義,所以x≠0。
當(dāng)y=中k=0時(shí),y=0,函數(shù)y是一個(gè)常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時(shí)y就不是反比例函數(shù)了。
例:已知y與x2反比例,并且當(dāng)x=3時(shí)y=4
。1)求出y和x之間的函數(shù)解析式
。2)求當(dāng)x=1.5時(shí)y的值
解析:因?yàn)閥與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2
和x之間的.函數(shù)解析式。之后引導(dǎo)學(xué)生書寫過(guò)程。能從實(shí)際問(wèn)題中抽象出反比例函數(shù)并確定其表達(dá)式最后學(xué)生練習(xí)并布置作業(yè)
通過(guò)此環(huán)節(jié),加深對(duì)本節(jié)課所內(nèi)容的認(rèn)識(shí),以達(dá)到鞏固的目的。
四、評(píng)價(jià)與反思
本節(jié)課是在學(xué)生現(xiàn)有的認(rèn)識(shí)基礎(chǔ)上進(jìn)行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點(diǎn)在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.應(yīng)該對(duì)這一方面的內(nèi)容多練習(xí)鞏固。
初中數(shù)學(xué)優(yōu)秀教案 14
教學(xué)目標(biāo):
知識(shí)與技能:會(huì)用計(jì)算器進(jìn)行數(shù)的加、減、乘、除、乘方運(yùn)算。
過(guò)程與方法:了解計(jì)算器的性能,并會(huì)操作和使用,能運(yùn)用計(jì)算器進(jìn)行較為復(fù)雜的運(yùn)算。
情感態(tài)度與價(jià)值觀:使學(xué)生能運(yùn)用計(jì)算器探索一些有趣的數(shù)學(xué)規(guī)律。
教學(xué)重點(diǎn):用計(jì)算器進(jìn)行數(shù)的加、減、乘、除、乘方的運(yùn)算。
教學(xué)難點(diǎn):能用計(jì)算器進(jìn)行數(shù)的乘方的運(yùn)算。
教材分析:在日常生活中,經(jīng)常會(huì)出現(xiàn)一些較為復(fù)雜的混合運(yùn)算,這就要求使用科學(xué)計(jì)算器。因此,使學(xué)生會(huì)用計(jì)算器進(jìn)行數(shù)加、減、乘、除、乘方的運(yùn)算就成為本節(jié)的重點(diǎn)和難 點(diǎn)。
教學(xué)方法:師生互動(dòng)法。
課時(shí)安排:1課時(shí)。
教具:Powerpoint幻燈片、科學(xué)計(jì)算器。
環(huán)節(jié) 教 師 活 動(dòng) 學(xué) 生 活 動(dòng) 設(shè) 計(jì) 意 圖
創(chuàng)設(shè)情境 一、從問(wèn)題情境入手,揭示課題。
。ǔ鍪净脽粢唬
在棋盤上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到64格,你能計(jì)算第64格應(yīng)放多少粒米?有簡(jiǎn)單的計(jì)算方法嗎
教師對(duì)學(xué)生的回答給予點(diǎn)評(píng),并帶著問(wèn)題引入本節(jié)課題:
板書:3.4 用計(jì)算器進(jìn)行數(shù)的.計(jì)算 在教師的引導(dǎo)下,學(xué)生仔細(xì)觀察、思考,積極回答。 通過(guò)師生的相互探討,使學(xué)生認(rèn)識(shí)到學(xué)會(huì)使用計(jì)算器的必要性,并激發(fā)學(xué)生的 求知欲。
探究活動(dòng)一 一、 介紹計(jì)算器的使用方法。
。ǔ鍪净脽舳
。滦陀(jì)算器的面板示意圖如下:
教師結(jié)合示意圖介紹按鍵的使用方法。
學(xué)生根據(jù)教師的介紹,使用計(jì)算器進(jìn)行實(shí)際操作。 通過(guò)訓(xùn)練,使學(xué)生掌握計(jì)算器 的按鍵操作,熟悉計(jì)算器的程序設(shè)計(jì)模式。
探究活動(dòng)二 二、用計(jì)算器進(jìn)行加、減、乘、除、乘方運(yùn)算
(出示幻燈三)
例1 用計(jì)算器求下列各式的值
(1)(-3.75)+(-22.5)
(2)51.7(-7.2)
解:(1)
(-3.75)+(-22.5)=-26.25
學(xué)生相互交流,并用計(jì)算器進(jìn)行實(shí)際操作。 通過(guò)計(jì)算,使學(xué)生熟悉計(jì)算器的用法。
探究活動(dòng)二 (2)
51.7(-7.2)=-372.24
學(xué)生相互交流,并用計(jì)算器進(jìn)行實(shí)際操作。
通過(guò)計(jì)算,使學(xué)生會(huì)用計(jì)算器進(jìn)行有理數(shù)的加、減、乘、除運(yùn)算。
探究活動(dòng)二 例2 用計(jì)算器計(jì)算(精確到0.001)
。ǎ0.45)5
(-0.45)5-0.018
相互討論,并進(jìn)行實(shí)際操作。 通過(guò)計(jì)算,使學(xué)生會(huì)用計(jì)算器進(jìn)行有理數(shù)的乘方運(yùn)算。
探究活動(dòng)二
例3 用計(jì)算器求值
(1)(-6)2(2)-62
解:
思考:
注意觀察它們的按鍵順序有什么不同?
學(xué)生認(rèn)真觀察、討論,得出結(jié)論。
通過(guò)對(duì)比,使學(xué)生能區(qū)分兩種按鍵的不同,靈活運(yùn)用計(jì)算器進(jìn)行計(jì)算。
探究活動(dòng)三 三、隨堂練習(xí)
(出示幻燈四)
用計(jì)算器求值
1.9.23+10.2
2 . (-2.35)(-0.46)
3.( -3.45)3
4.-2.082
學(xué)生獨(dú)立操作完成。 通過(guò)訓(xùn)練,使學(xué)生能熟練地用計(jì)算器進(jìn)行數(shù)的運(yùn)算。
探究活動(dòng)四 四、實(shí)際應(yīng)用,能力提高。
1.用計(jì)算器解決“創(chuàng)設(shè)情境”中提出的問(wèn)題。
。ǔ鍪净脽粑澹
2.張老師在銀行貸月息為0.456%的住房 貸款50 000元,滿5年時(shí)共需付款50 000(1+600.456%)元,其中包括貸款本金和貸款利息。張老師共需付利息多少元? 在教師的引導(dǎo)下,分組討論,互相交流,回答有關(guān)的信息,學(xué)生互評(píng)。 通過(guò)實(shí)際應(yīng)用,進(jìn)一步提高學(xué)生運(yùn)用計(jì)算器解決實(shí)際問(wèn)題的能力。
學(xué)習(xí)總結(jié) 五、學(xué)習(xí)總結(jié)
這節(jié)課你有哪些收獲?有什么體會(huì)?
教師簡(jiǎn)要點(diǎn)評(píng):
。1)由于受計(jì)算器顯示數(shù)位的限制,計(jì)算結(jié)果是一個(gè)近似數(shù)。
。2)當(dāng)計(jì)算結(jié)果很大時(shí),計(jì)算器能將計(jì)算結(jié)果自動(dòng)轉(zhuǎn)化為科學(xué)記數(shù)法的形式來(lái)顯示。
學(xué)生相互交流自己的 收獲和體會(huì),教師參與互動(dòng)并給予鼓勵(lì) 性的評(píng)價(jià)。 學(xué)生自由發(fā)表學(xué)習(xí)心得,能鍛煉學(xué)生的語(yǔ)言表達(dá)能力和歸納概括能力。
課堂反饋
1.用計(jì)算器進(jìn)行計(jì)算(略)
2.(1)用計(jì)算器計(jì)算下列各式:
1111,111111,1 1111 111,11 11111 111 。
(2)根據(jù) (1)的計(jì)算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?
(3)如果不用計(jì)算器,你能直接寫出1 111 1111 111 1 11的結(jié)果嗎? 讓學(xué)生熟練運(yùn)用計(jì)算器進(jìn)行操作,學(xué)以致用。 及時(shí)反饋,并使學(xué)生能運(yùn)用計(jì)算器探究一些有趣的數(shù)學(xué)規(guī)律。
附:板書設(shè)計(jì):
。常从糜(jì)算器進(jìn)行數(shù)的計(jì)算
。保榻B計(jì)算器的使用方法;
。玻\(yùn)用計(jì)算器進(jìn)行數(shù)的運(yùn)算;
3.運(yùn)用計(jì)算器探究數(shù)學(xué)規(guī)律。
教學(xué)反思:
。保煌A粼趐owerpoint的使用上,有一定的局限性,如能演示使用計(jì)算器的方法,效果會(huì)更好。
。玻陆虒W(xué)觀念,最好以學(xué)生自學(xué)使用計(jì)算器的方法為主,使學(xué)生主動(dòng)參與探索,培養(yǎng)學(xué)生的創(chuàng)新精神。
。常處熤鲗(dǎo)課堂,忽視學(xué)生的學(xué)習(xí)主體作用,不利于創(chuàng)新思維及個(gè)性化發(fā)展。而通過(guò)網(wǎng)絡(luò)或多媒體的教學(xué)過(guò)程中,往往易忽視教師的作用,過(guò)分的 依賴于學(xué)習(xí)者的主觀能動(dòng)性,教學(xué)成本也大幅度提高。
初中數(shù)學(xué)優(yōu)秀教案 15
教學(xué)目標(biāo)
知識(shí)
技能 1.通過(guò)觀察實(shí)驗(yàn),使學(xué)生了解圓心角的概念.
2.掌握在同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,就可以推出它們所對(duì)應(yīng)的其余各組量也相等,以及它們?cè)诮忸}中的應(yīng)用.
過(guò)程
方法 通過(guò)復(fù)習(xí)旋轉(zhuǎn)的知識(shí),產(chǎn)生圓心角的概念,然后用圓心角和旋轉(zhuǎn)的知識(shí)探索在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等,最后應(yīng)用它解決一些具體問(wèn)題,進(jìn)一步理解和體會(huì)研究幾何圖形的各種方法.
情感
態(tài)度 激發(fā)學(xué)生觀察、探究、發(fā)現(xiàn)數(shù)學(xué)問(wèn)題的興趣和欲望.
教學(xué)重點(diǎn)
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)弦也相等及其兩個(gè)推論和它們的應(yīng)用.
教學(xué)難點(diǎn)
探索定理和推導(dǎo)及其應(yīng)用.
教學(xué)過(guò)程設(shè)計(jì)
教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計(jì)意圖
一、導(dǎo)語(yǔ)這節(jié)課我們繼續(xù)研究圓的性質(zhì),請(qǐng)同學(xué)們完成下題.
1.已知△OAB,如圖所示,作出繞O點(diǎn)旋轉(zhuǎn)30、45、60的圖形.
2.圓是中心對(duì)稱圖形嗎?將圓旋轉(zhuǎn)任意角度后會(huì)出現(xiàn)什么情況?我們學(xué)過(guò)的幾何圖形中既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的是?
二、探究新知
。ㄒ唬A心角定義
在紙上任意畫一個(gè)圓,任意畫出兩條不在同一條直線上的半徑,構(gòu)成一個(gè)角,這樣的角就是圓心角.如圖所示,AOB的頂點(diǎn)在圓心,像這樣,頂點(diǎn)在圓心的角叫做圓心角.
。ǘ、圓心角、弧、弦之間的關(guān)系定理
1.按下列要求作圖并回答問(wèn)題:
如圖所示的⊙O中,分別作相等的圓心角AOB和AOB將圓心角AOB繞圓心O旋轉(zhuǎn)到A‵OB‵的位置,你能發(fā)現(xiàn)哪些等量關(guān)系?為什么?
得到: 在同一個(gè)圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等.
2.在等圓中相等的圓心角是否也有所對(duì)的弧相等,所對(duì)的弦相等呢?
綜合1、2,我們可以得到關(guān)于圓心角、弧、弦之間的關(guān)系定理:
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等.
3.分析定理:去掉“在同圓或等圓中”這個(gè)條件,行嗎?
4.定理拓展:
○1在同圓或等圓中,如果兩條弧相等,那么它們所對(duì)的圓心角,所對(duì)的弦也分別相等嗎?
○2在同圓或等圓中,如果兩條弦相等,那么它們所對(duì)的圓心角,所對(duì)的弧也分別相等嗎?綜上得到
在同圓或等圓中,相等的弧所對(duì)的圓心角相等,所對(duì)的弦也相等.
在同圓或等圓中,相等的弦所對(duì)的弧相等,所對(duì)的圓心角也相等.
綜上所述,同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,就可以推出它們所對(duì)應(yīng)的其余各組量也相等.
。ㄈ、定理應(yīng)用
1.課本例1
2.如圖,在⊙O中,AB、CD是兩條弦,OEAB,OFCD,垂足分別為EF.
。1)如果AOB=COD,那么OE與OF的大小有什么關(guān)系?為什么?
。2)如果OE=OF,那么 與 的大小有什么關(guān)系?AB與CD的大小有什么關(guān)系?為什么?AOB與COD呢?
三、課堂訓(xùn)練
完成課本83頁(yè)練習(xí)
補(bǔ)充:如圖3和圖4,MN是⊙O的直徑,弦AB、CD相交于MN上的一點(diǎn)P,APM=CPM.
。1)由以上條件,你認(rèn)為AB和CD大小關(guān)系是什么,請(qǐng)說(shuō)明理由.
。2)若交點(diǎn)P在⊙O的外部,上述結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說(shuō)明理由.
四、小結(jié)歸納
1.圓心角概念.
2.在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,則它們所對(duì)應(yīng)的其余各組量都分別相等,及它們的應(yīng)用.
五、作業(yè)設(shè)計(jì)
作業(yè):復(fù)習(xí)鞏固作業(yè)和綜合運(yùn)用為全體學(xué)生必做;拓廣探索為成績(jī)中上等學(xué)生必做. 教師布置學(xué)生畫圖,復(fù)習(xí)旋轉(zhuǎn)知識(shí),為探究本節(jié)課定理作鋪墊
學(xué)生通過(guò)畫圖復(fù)習(xí)旋轉(zhuǎn)知識(shí),明白繞O點(diǎn)旋轉(zhuǎn),O點(diǎn)就是旋轉(zhuǎn)中心,旋轉(zhuǎn)30,就是旋轉(zhuǎn)角是30
學(xué)生畫一個(gè)圓,按教師要求操作,觀察,思考,交流,教師給出圓心角定義,
學(xué)生按照要求作圖,并觀察圖形,結(jié)合圓的'旋轉(zhuǎn)不變性和相關(guān)知識(shí)進(jìn)行思考,嘗試得出關(guān)系定理,再進(jìn)行嚴(yán)格的幾何證明.
學(xué)生思考,類比同圓中得到的結(jié)論進(jìn)行探究,猜想,并驗(yàn)證
學(xué)生思考,明白該前提條件的不可缺性,師生分析,進(jìn)一步理解定理.
教師引導(dǎo)學(xué)生類比定理獨(dú)立用類似的方法進(jìn)行探究,得到推論
學(xué)生審題,理清題中的數(shù)量關(guān)系,由本節(jié)課知識(shí)思考解決方法.
教師組織學(xué)生進(jìn)行練習(xí),教師巡回檢查,集體交流評(píng)價(jià),教師指導(dǎo)學(xué)生寫出解答過(guò)程,體會(huì)方法,總結(jié)規(guī)律.
讓學(xué)生嘗試歸納,總結(jié),發(fā)言,體會(huì),反思,教師點(diǎn)評(píng)匯總
通過(guò)學(xué)生親自動(dòng)手操作發(fā)現(xiàn)圓的旋轉(zhuǎn)不變性,為后續(xù)探究打下基礎(chǔ)
通過(guò)該問(wèn)題引起學(xué)生思考,進(jìn)行探究,發(fā)現(xiàn)關(guān)系定理,初步感知培養(yǎng)學(xué)生的分析能力,解題能力.
為繼續(xù)探究其推論奠定基礎(chǔ).
感受類比思想,類比中全面透徹地理解和掌握關(guān)系定理和它的推論,并進(jìn)行推廣,得到其他幾個(gè)定理,完整的把握所學(xué)知識(shí).
給出一般敘述,以其更好的應(yīng)用.
培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和能力,體會(huì)轉(zhuǎn)化思想,化未知為已知,從而解決本題.
運(yùn)用所學(xué)知識(shí)進(jìn)行應(yīng)用,鞏固知識(shí),形成做題技巧
讓學(xué)生通過(guò)練習(xí)進(jìn)一步理解,培養(yǎng)學(xué)生的應(yīng)用意識(shí)和能力
歸納提升,加強(qiáng)學(xué)習(xí)反思,幫助學(xué)生養(yǎng)成系統(tǒng)整理知識(shí)的習(xí)慣
鞏固深化提高
板 書 設(shè) 計(jì)
課題
圓心角、弧、弦之間的關(guān)系定理 關(guān)系定理應(yīng)用
1. 2. 歸納
教 學(xué) 反 思
【初中數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:
初中數(shù)學(xué)教案10-26
初中數(shù)學(xué)教案10-07
(優(yōu)秀)初中數(shù)學(xué)教學(xué)隨筆05-28
初中數(shù)學(xué)競(jìng)賽方案優(yōu)秀11-12
初中數(shù)學(xué)教學(xué)隨筆優(yōu)秀04-25
【精華】初中數(shù)學(xué)教案09-09