久久精品99久久|国产剧情网站91|天天色天天干超碰|婷婷五天月一av|亚州特黄一级片|亚欧超清无码在线|欧美乱码一区二区|男女拍拍免费视频|加勒比亚无码人妻|婷婷五月自拍偷拍

教案

初中數(shù)學(xué)教學(xué)教案

時(shí)間:2022-12-19 14:46:28 教案 我要投稿

初中數(shù)學(xué)教學(xué)教案

  作為一位不辭辛勞的人民教師,時(shí)常要開展教案準(zhǔn)備工作,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教案要怎么寫呢?下面是小編幫大家整理的初中數(shù)學(xué)教學(xué)教案,歡迎大家分享。

初中數(shù)學(xué)教學(xué)教案

初中數(shù)學(xué)教學(xué)教案1

  教學(xué)目標(biāo)

  1.會(huì)通過列方程解決“配套問題”;

  2.掌握列方程解決實(shí)際問題的一般步驟;

  3.通過列方程解決實(shí)際問題的過程,體會(huì)建模思想。

  教學(xué)重點(diǎn) 建立模型解決實(shí)際問題的一般方法。

  教學(xué)難點(diǎn) 建立模型解決實(shí)際問題的一般方法。

  學(xué)情分析

  1、 在前面已學(xué)過一元一次方程的解法,能夠簡單的運(yùn)用一元一次方程解決實(shí)際問題。

  2、 培養(yǎng)學(xué)生分析、解決問題的能力及邏輯思維能力。

  學(xué)法指導(dǎo) 自學(xué)互幫導(dǎo)學(xué)法

  教 學(xué)過程

  教學(xué)內(nèi)容 教師活動(dòng) 學(xué)生活動(dòng) 效果預(yù)測(cè)( 可能出現(xiàn)的問題) 補(bǔ)救措施 修改意見

  一、復(fù)習(xí)與回顧

  問題1:之前我們通過列方程解應(yīng)用問題的過程中,大致包含哪些步驟?

  1. 審:審題,分析題目中的`數(shù)量關(guān)系;

  2. 設(shè):設(shè)適當(dāng)?shù)奈粗獢?shù),并表示未知量;

  3. 列:根據(jù)題目中的數(shù)量關(guān)系列方程;

  4. 解:解這個(gè)方程;

  5. 答:檢驗(yàn) 并答話。

  二、應(yīng)用與探究

  問題2:應(yīng)用回顧的步驟解決以下問題。

  例1 某車間有22名工人,每人每天可以生產(chǎn)1 200個(gè)螺釘或2 000個(gè)螺母。 1個(gè)螺釘 需要配 2個(gè)螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套,應(yīng)安排生產(chǎn)螺釘和螺母的工人 各多少名?

  三、課堂練習(xí)

  1:一套儀器由一個(gè)A部件和三個(gè)B部件構(gòu)成。 用1 m3鋼材可以做40個(gè)A部件或240個(gè)B部件。 現(xiàn)要用6 m3鋼材制作這種儀器,應(yīng)用多少鋼材做A部件,多少鋼材 做B部件,恰好配成這種儀器多少套?

  2:某糕點(diǎn)廠中秋節(jié)前要制作一批盒裝月餅,每盒中裝2塊大月餅和4塊小月餅。制作1塊大月餅要用0.05kg面粉,1塊小月餅要用0.02kg面粉。 現(xiàn)共有面粉4500kg,制作兩種月餅 應(yīng)各用多少面粉,才能生產(chǎn)最多的盒裝月餅?

  四、小結(jié)與歸納

  問題4:用一元一次方程解決實(shí)際問題的基本過程有幾個(gè)步驟? 分別是什么?

  五、課后作業(yè)

  教科書第106頁習(xí)題3.4 第2、3、7題;

  1、教師利用復(fù)習(xí)提問的方式導(dǎo)入,幫助學(xué)生掌握列方程解應(yīng)用題的步驟。

  2、教師展示例題,并 巡視學(xué)生獨(dú)立完成情況,引導(dǎo)學(xué)生分析問題并解決問題。

  3、教師展示練習(xí)題,引導(dǎo)學(xué)生分析問題并解決問題,并巡視。

  4、教師通過提問,讓學(xué)生進(jìn)行歸納小結(jié)。

  1、學(xué)生回憶并獨(dú)立回答。

  2、學(xué)生先觀看課件,先獨(dú)立思考,再合作交流解決問題 。

  3、學(xué)生先觀看課件并解決問題。

  4、學(xué)生自主歸納本節(jié)課所學(xué)內(nèi)容。

  不能解決問題。

  教師展示解答過程。

初中數(shù)學(xué)教學(xué)教案2

  學(xué)習(xí)目標(biāo):

  【知識(shí)與技能】

  1、通過具體實(shí)例認(rèn)識(shí)兩個(gè)圖形關(guān)于某一點(diǎn)或中心對(duì)稱的本質(zhì):就是一個(gè)圖形繞一點(diǎn)旋轉(zhuǎn)180°而成.

  2、掌握成中心對(duì)稱的兩個(gè)圖形的性質(zhì),以及利用兩種不同方式作出中心對(duì)稱的圖形.

  【過程與方法】

  利用中心對(duì)稱的特征作出某一圖形成中心對(duì)稱的圖形,確定對(duì)稱中心的位置.

  【情感、態(tài)度與價(jià)值觀】

  經(jīng)歷對(duì)日常生活與中心對(duì)稱有關(guān)的圖形進(jìn)行觀察、分析、欣賞、動(dòng)手操作、畫圖等過程,發(fā)展審美能力,增強(qiáng)對(duì)圖形的欣賞意識(shí).

  【重點(diǎn)】

  中心對(duì)稱的性質(zhì)及初步應(yīng)用.

  【難點(diǎn)】

  中心對(duì)稱與旋轉(zhuǎn)之間的關(guān)系.

  學(xué)習(xí)過程:

  一、自主學(xué)習(xí)

 。ㄒ唬⿵(fù)習(xí)鞏固

  如圖,△ABC繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)到點(diǎn)D處,畫出旋 轉(zhuǎn)后的三角形,并寫出簡要作法.

  作法:(1)

  (2)

  (3)

 。4)

  即:△DEF就是所求作的三角形,如圖所示.

 。ǘ┳灾魈骄

  1、觀察、實(shí)驗(yàn):選擇你最喜歡的一幅圖,用透明紙覆蓋在圖上,描出其中的一部分,用大頭針固定在O處。旋轉(zhuǎn)180°后,你有什么發(fā)現(xiàn)?

 。1) (2) (3)

  發(fā)現(xiàn):把一個(gè)圖形繞著某一個(gè) 旋轉(zhuǎn) ,如果他們能夠與另一個(gè)圖形 ,那么就說這 個(gè)圖形 或 ,這個(gè)點(diǎn)叫做 ,這兩個(gè)圖形中的 叫做關(guān)于中心的 .

  2、組內(nèi)交流

  在圖5中,我們通過實(shí)驗(yàn)知四邊形A B C D和四邊形A'B'C'D'關(guān)于點(diǎn)O對(duì)稱。

 。1)你知道它的對(duì)稱中心、對(duì)稱點(diǎn)嗎?

 。2)連接A A'、 B B' 、C C' 、D D'你有什么發(fā)現(xiàn)?

 。3)線段AB、BC、CD、DA的對(duì)應(yīng)線段是什么?AB與A'B'的關(guān)系是怎樣的?四邊形ABCD和四邊形A'B'C'D'有什么關(guān)系?為什么?

 。ㄈw納總結(jié):

  1、默寫中心對(duì)稱的概念:

  2、中心對(duì)稱的性質(zhì):

  1)

  2)

 。ㄋ模┳晕覈L試:

 。1)、已知點(diǎn)A和點(diǎn)O,畫出點(diǎn)A關(guān)于點(diǎn)O的對(duì)稱點(diǎn)A'。

 。2)、已知如圖△ABC和點(diǎn)O,畫出與△ABC關(guān)于點(diǎn)O的對(duì)稱圖形A'B'C'。

  二、教師點(diǎn)拔

  1、 中心對(duì)稱與圖形旋轉(zhuǎn)的關(guān)系?

  2、中心對(duì)稱與軸對(duì)稱的區(qū)別:

  軸對(duì)稱中心對(duì)稱

  有一條對(duì)稱軸---( )有一個(gè)對(duì)稱中心---( )

  圖形沿對(duì)稱軸 (翻折180°)后重合圖形繞對(duì)稱中心 后重合

  對(duì)稱點(diǎn)的連線被對(duì)稱軸 對(duì)稱點(diǎn)連線經(jīng)過 ,且被對(duì)稱

  中心

  三、堂檢測(cè)

  1、已知下列命題:① 關(guān)于中心對(duì)稱的兩個(gè)圖形一定不全等; ②關(guān)于中心對(duì)稱的兩個(gè)圖形一定全等; ③兩個(gè)全等的圖形一定成中心對(duì)稱,其中真命題的.個(gè)數(shù)是( )

  A、0 B、1 C、2 D、3

  2、下列圖形即是軸對(duì)稱又是中心對(duì)稱的是( )

  A B C C

  3、已知,△ABC與△DEF成中心對(duì)稱,請(qǐng)找出它們的對(duì)稱中心。

  4、如圖,若四邊形ABCD與四邊形CEFG成中心對(duì)稱,則它們的對(duì)稱中心是______,點(diǎn)A的對(duì)稱點(diǎn)是______,E的對(duì)稱點(diǎn)是______.BD∥______且BD=______.連結(jié)A,F(xiàn)的線段經(jīng)過______,且被C點(diǎn)______,△ABD≌______.

  4題圖

  5、如圖,點(diǎn)A'是A關(guān)于點(diǎn)O的對(duì)稱點(diǎn),請(qǐng)作出線段AB關(guān)于點(diǎn)O對(duì)稱的線段A'B'

  四、外拓展

  1、如圖,在△ABC中,B=90°,C=30°,AB=1 ,將△ABC繞定點(diǎn)A旋轉(zhuǎn)180°,點(diǎn)C落在C'處,求CC'的長為多少?

  2、如圖,已知AD是△ABC的中線:

  1)畫出與△ACD關(guān)于D點(diǎn)成中心對(duì)稱的三角形;

  2)找出與AC相等的線段;

  3)探索:三角形中AB與AC的和與中線AD之間的關(guān)系,并說明理由;

  4)若AB=5、AC=3,則線段AD的取值范圍為多少?

初中數(shù)學(xué)教學(xué)教案3

  教學(xué)目標(biāo):

  1、初步體會(huì)從不同方向觀察同一物體可能看到不同的圖形;

  2、能識(shí)別簡單物體的三視圖,體會(huì)物體三視圖的合理性;

  3、會(huì)畫立方體及其簡單組合的三視圖;

  過程與方法

  1、 在“觀察”的活動(dòng)過程中,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念;

  2、 能在與他人交流的過程中,合理清晰地表達(dá)自己的思維過程;

  3、 滲透多側(cè)面觀察分析的思維方法;

  情感與態(tài)度

  通過系列學(xué)生感興趣的活動(dòng),形成學(xué)習(xí)數(shù)學(xué)的積極情感,激發(fā)對(duì)空間與圖形學(xué)習(xí)的好奇心,逐漸形成與他人合作交流的意識(shí).

  教學(xué)重、難點(diǎn):

  重點(diǎn):體會(huì)從不同方向看同一物體可能看到不同的結(jié)果.

  難點(diǎn):能畫立方體及簡單組合的三視圖.

  教法學(xué)法:

 、侔l(fā)現(xiàn)式教學(xué)法 ②動(dòng)手實(shí)踐與思考相結(jié)合法

  教學(xué)過程設(shè)計(jì):

  一、創(chuàng)設(shè)情境,引入新課

  1. 看錄像;

  2. 從學(xué)生熟悉的'古詩入手,觀察廬山;

  3. 房屋的房型圖.

  二、觀察體驗(yàn)、探索結(jié)論

  活動(dòng)1:觀察一組圖片,找出結(jié)論.

  活動(dòng)2:觀察圖片,注意這些圖片的拍攝角度,你能挑出一組三視圖的圖片嗎?

  活動(dòng)3:猜猜看:通過從不同角度拍攝的圖片來猜測(cè)實(shí)物是什么?

  活動(dòng)4:觀察下圖

  如果分別從正面、左面、上面看著三個(gè)幾何體,分別得到什么平面圖形?

  三.學(xué)畫簡單幾何體的三視圖

  給出由4個(gè)小正方體形成的組合圖形, 從正面、左面、上面觀察并畫出相應(yīng)的平面圖形.

  如: 從上面看

  從左面看

  從正面看 從左面看 從上面看

  從正面看

  做一做:以小組為單位,用6個(gè)小立方體塊搭出不同的幾何體,然后根據(jù)搭建的幾何體畫出從正面、左面、上面觀察得到的平面圖形,并在小組內(nèi)交流驗(yàn)證,看誰畫的圖最標(biāo)準(zhǔn).而后,全班同學(xué)根據(jù)某小組畫的三視圖來組合立體圖形.

  四、小結(jié)與反思:

  1.本節(jié)課研究的主要內(nèi)容是什么?

  2.本節(jié)課數(shù)學(xué)知識(shí)對(duì)平時(shí)的學(xué)習(xí)生活有何作用?

  五、練習(xí)與作業(yè):

  1. 能力作業(yè):畫出我校教學(xué)樓的三視圖(以面向南為“從正面看”),或者畫出你家的房屋(或設(shè)計(jì))的平面圖.

初中數(shù)學(xué)教學(xué)教案4

  教學(xué)目標(biāo)知識(shí)目標(biāo):

  1.理解平行線分三角形兩邊成比例定理;

  2.進(jìn)一步熟悉平行線分三角形兩邊成比例定理的應(yīng)用;

  能力目標(biāo):

  培養(yǎng)學(xué)生的觀察、分析、概括能力;

  德育目標(biāo):

  了解特殊與一般的辯證關(guān)系;

  教學(xué)重點(diǎn)定理的推導(dǎo)與應(yīng)用

  教學(xué)難點(diǎn)成比例的線段中比例線段的確認(rèn)

  教具學(xué)具多媒體 三角板

  教學(xué)方法講練結(jié)合

  過程教學(xué)內(nèi)容學(xué)生活動(dòng)設(shè)計(jì)意圖

  一、復(fù)習(xí)提問 引入新課

  問題:

  1、三角形中位線定理的推論是什么?

  2、如何用幾何語言描述?

  3、定理結(jié)論用比例尺如何表述?

  二、新課

  1、議一議

  如圖DE∥BC

 。1)如果 ,那么 等于多少?為什么?

  學(xué)生定理內(nèi)容,用幾何語言描述定理并用比例表示

  學(xué)生進(jìn)行討論,通過教師引導(dǎo),得出對(duì)應(yīng)結(jié)論。為新課作鋪墊

  培養(yǎng)學(xué)生的觀察、分析能力

 。2)如果 ,是否也有 呢?為什么?

 。3)如果把條件改為 那么 是否還與 相等?為什么?

  教師進(jìn)行簡單說明。

  2、由此我們可以得到什么樣的結(jié)論?如何描述?

  這個(gè)比例關(guān)系還可以怎么表示?為什么?

  平行線分三角形兩邊成比例定理:

  平行于三角形一邊的'直線截其他兩邊,所得的對(duì)應(yīng)線段成比例。

  例1已知:如圖,在△ABC中,DE∥BC,AD=4,DB=3,AC=10,求AE、EC的長。

  學(xué)生概括用幾何語言表示:

  DE∥BC

  應(yīng)用比例性質(zhì)完成比例變式

  學(xué)生完成一步推理:

  DE∥BC

  學(xué)生思考,自己嘗試解題

  復(fù)習(xí)比例性質(zhì),靈活運(yùn)用定理

  幫助記憶、加深印象

  加深定理理解

  解題過程:略

  練習(xí):

  選擇課后習(xí)題練習(xí)

  學(xué)生練習(xí)

  靈活運(yùn)用定理

  小結(jié)平行線分三角形兩邊成比例定理;

  注意把對(duì)應(yīng)線段寫在對(duì)應(yīng)位置

  板書設(shè)計(jì)平行線分三角形兩邊成比例

  1、定理 2、例1 3、練習(xí)

  布置作業(yè)同步練習(xí)節(jié)選

  課后自評(píng)

初中數(shù)學(xué)教學(xué)教案5

  課題:12.3等腰三角形(第一課時(shí))

  教學(xué)內(nèi)容:新人教版八年級(jí)上冊(cè)十二章第三節(jié)等腰三角形的第一課時(shí)

  任課教師:東灣中學(xué)李曉偉

  設(shè)計(jì)理念:

  教學(xué)的實(shí)質(zhì)是以教材中提供的素材或?qū)嶋H生活中的一些問題為載體,通過一系列探究互動(dòng)過程,滲透分類討論、數(shù)形結(jié)合和方程的思想方法,達(dá)到學(xué)生知識(shí)的構(gòu)建、能力的培養(yǎng)、情感的陶冶、意識(shí)的創(chuàng)新。

  ㈠教材的地位和作用分析

  等腰三角形是新人教版八年級(jí)上冊(cè)十二章第三節(jié)等腰三角形的第一課時(shí)的內(nèi)容。本節(jié)課是在前面學(xué)習(xí)了三角形的有關(guān)概念及性質(zhì)、軸對(duì)稱變換、全等三角形、垂直平分線和尺規(guī)作圖的基礎(chǔ)上,研究等腰三角形的定義及其重要性質(zhì),它既是前面所學(xué)知識(shí)的延伸,也是后面直角三角形、等邊三角形的知識(shí)的重要儲(chǔ)備,我們常常利用它證明角相等、線段相等、兩直線垂直,因此本節(jié)課具有承上啟下的重要作用。

  另外,本堂課通過“活動(dòng)探究”、“觀察—猜想—證明”等途徑,進(jìn)一步培養(yǎng)學(xué)生的動(dòng)手能力、觀察能力、分析能力和邏輯推理能力,因此,本堂課無論在知識(shí)上,還是在對(duì)學(xué)生能力的培養(yǎng)及情感教育等方面都有著十分重要的作用。

  ㈡教學(xué)內(nèi)容的分析

  本堂課是等腰三角形的第一堂課,在認(rèn)識(shí)等腰三角形的基礎(chǔ)上著重介紹“等腰三角形的性質(zhì)”。在教學(xué)設(shè)計(jì)的過程中,通過展示我國今年舉辦的精彩絕倫的盛會(huì)—上海世博會(huì)圖片中的等腰三角形,結(jié)合云南豐富的文化資源,讓學(xué)生感知生活中處處有數(shù)學(xué),感受圖形的和諧美、對(duì)稱美;通過學(xué)生感興趣的數(shù)學(xué)情景引入等腰三角形定義,提高學(xué)生的學(xué)習(xí)樂趣;讓學(xué)生通過動(dòng)手剪等腰三角形、對(duì)折等腰三角形等活動(dòng),探究發(fā)現(xiàn)等腰三角形的性質(zhì),經(jīng)歷知識(shí)的“再發(fā)現(xiàn)”過程。在探究活動(dòng)的過程中發(fā)展創(chuàng)新思維能力,改變學(xué)生的學(xué)習(xí)方式。在發(fā)現(xiàn)等腰三角形的性質(zhì)的基礎(chǔ)上,再經(jīng)過推理證明等腰三角形的性質(zhì),使得推理證明成為學(xué)生觀察、實(shí)驗(yàn)、探究得出結(jié)論的自然延伸,有機(jī)地將等腰三角形的認(rèn)識(shí)與等腰三角形的性質(zhì)的證明結(jié)合起來,從中發(fā)展學(xué)生推理能力。

  在例題的選取上,注重聯(lián)系實(shí)際,激發(fā)學(xué)生學(xué)習(xí)興趣,讓學(xué)生主動(dòng)用數(shù)學(xué)知識(shí)解決實(shí)際問題,同時(shí)滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學(xué)思想方法,讓學(xué)生形成自我的數(shù)學(xué)思維和能力,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。

  二、目標(biāo)及其解析

  ㈠教學(xué)目標(biāo):

  知識(shí)技能:

  1.了解等腰三角形的概念,認(rèn)識(shí)等腰三角形是軸對(duì)稱圖形;2.經(jīng)歷探究等腰三角形性質(zhì)的過程,理解等腰三角形的性質(zhì)的證明;

  3.掌握等腰三角形的性質(zhì),能運(yùn)用等腰三角形的性質(zhì)解決生活中簡單的實(shí)際問題。

  數(shù)學(xué)思考:

  1.經(jīng)歷“觀察?實(shí)驗(yàn)?猜想?論證”的過程,發(fā)展學(xué)生幾何直觀;

  2.經(jīng)歷證明等腰三角形的性質(zhì)的過程,體會(huì)證明的必要性,發(fā)展合情推理能力和初步的演繹推理能力.

  解決問題:

  1.能運(yùn)用等腰三角形的性質(zhì)解決生活中的實(shí)際問題,發(fā)展數(shù)學(xué)的應(yīng)用能力,獲得解決問題的經(jīng)驗(yàn);

  2.在小組活動(dòng)和探究過程中,學(xué)會(huì)與人合作,體會(huì)與他人合作的重要性.

  情感態(tài)度:

  1.經(jīng)歷“觀察?實(shí)驗(yàn)?猜想?論證”的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探究性和創(chuàng)造性,感受證明的必要性、證明過程的嚴(yán)謹(jǐn)性以及結(jié)論的確定性,并有克服困難和運(yùn)用知識(shí)解決問題的成功體驗(yàn),建立學(xué)好數(shù)學(xué)的自信心;

  2.經(jīng)歷運(yùn)用等腰三角形解決實(shí)際問題的過程,認(rèn)識(shí)數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對(duì)促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的作用;

  3.在獨(dú)立思考的基礎(chǔ)上,通過小組合作,積極參與對(duì)數(shù)學(xué)問題的討論,敢于發(fā)表自己的觀點(diǎn),并尊重與理解他人的見解,在交流中獲益.

  ㈡教學(xué)重點(diǎn):

  等腰三角形的性質(zhì)及應(yīng)用。

  ㈢教學(xué)難點(diǎn):

  等腰三角形性質(zhì)的證明。

  ㈣解析

  本堂課是等腰三角形的第一堂課,所以對(duì)于本堂課的知識(shí)目標(biāo)的定位,主要考慮如下:1.了解等腰三角形的概念,認(rèn)識(shí)等腰三角形是軸對(duì)稱圖形,在本堂課中要達(dá)到如下要求:⑴理解等腰三角形的定義,知道等腰三角形的頂角、底角、腰和底邊;⑵知道等腰三角形是軸對(duì)稱圖形,它有一條對(duì)稱軸,即:頂角角平分線(底邊上的高或底邊上的中線)所在直線;

  2.經(jīng)歷探究等腰三角形性質(zhì)的過程,掌握等腰三角形的`性質(zhì)的證明,在課堂中讓學(xué)生參與等腰三角形性質(zhì)的探索,鼓勵(lì)學(xué)生用規(guī)范的數(shù)學(xué)言語表述證明過程,發(fā)展學(xué)生的數(shù)學(xué)語言能力和演繹推理能力,引導(dǎo)學(xué)生完成對(duì)等腰三角形的性質(zhì)的證明;

  3.會(huì)利用等腰三角形的性質(zhì)解決簡單的實(shí)際問題,本堂課要達(dá)到以下要求:掌握等腰三角形的性質(zhì),會(huì)利用等腰三角形的性質(zhì)解決簡單的實(shí)際問題。

  三、問題診斷分析

  1.在這堂課中,學(xué)生可能遇到的第一個(gè)困難是等腰三角形性質(zhì)的發(fā)現(xiàn),特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì),解決這一問題教師主要借助等腰三角形對(duì)稱性的研究,并引導(dǎo)學(xué)生理解“重合”這個(gè)詞的涵義。

  2.這堂課學(xué)生可能遇到的第二個(gè)問題是證明等腰三角形的性質(zhì),這一問題主要有三個(gè)原因:第一學(xué)生剛接觸幾何證明不久,對(duì)數(shù)學(xué)語言表達(dá)方式還不熟悉;這一困難,并不是一堂課就能解決的,而要在以后學(xué)習(xí)中幫助學(xué)生增強(qiáng)數(shù)學(xué)語言運(yùn)用的能力,能有條理地、清晰地闡述自己的觀點(diǎn)。在這堂課中我通過等腰三角形性質(zhì)的證明,鼓勵(lì)學(xué)生運(yùn)用規(guī)范的數(shù)學(xué)語言來表述,使學(xué)生數(shù)學(xué)語言能力和演繹推理能力得到提升;第二是添加輔助線的問題,這也是學(xué)生在證明中的一個(gè)難點(diǎn)。要解決這一問題,我借助等腰三角形是軸對(duì)稱圖形,通過研究等腰三角形的對(duì)稱軸,讓學(xué)生理解三種添加輔助線的方法,即作頂角角平分線、底邊上的高或底邊上的中線;第三是證明等腰三角形頂角角平分線、底邊上的中線、底邊上的高互相重合這一性質(zhì),要突破這一難點(diǎn),我采用先證明等腰三角形兩底角相等這一性質(zhì),為學(xué)生搭一個(gè)臺(tái)階,更好地解決這個(gè)難點(diǎn)。

  3.這堂課中學(xué)生可能遇到的第三個(gè)問題是對(duì)等腰三角形的性質(zhì)的應(yīng)用,特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì)的應(yīng)用;所以我在設(shè)計(jì)

  課堂練習(xí)時(shí),注重?cái)?shù)學(xué)知識(shí)與生活實(shí)際的聯(lián)系,提高學(xué)生數(shù)學(xué)學(xué)習(xí)的興趣,讓學(xué)生主動(dòng)運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題,并通過練習(xí)滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學(xué)思想方法,讓學(xué)生形成自我的數(shù)學(xué)思維和能力,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。

  四、教法、學(xué)法:

  教法:

  常言道:“教必有法,教無定法”。所以我針對(duì)八年級(jí)學(xué)生的心理特點(diǎn)和認(rèn)知能力水平,大膽應(yīng)用生活中的素材,并作了精心的安排,充分體現(xiàn)數(shù)學(xué)是源于實(shí)踐又運(yùn)用于生活。因此,本堂課的教學(xué)中,我以學(xué)生為主體,讓學(xué)生積極思維,勇于探索,主動(dòng)地獲取知識(shí)。同時(shí),采用了現(xiàn)代化教學(xué)技術(shù),激發(fā)學(xué)生的學(xué)習(xí)興趣,使整個(gè)課堂“活”起來,提高課堂效率。本堂課以生活中的一些例子為中心,讓學(xué)生親自嘗試,接受問題的挑戰(zhàn),充分展示自己的觀點(diǎn)和見解,給學(xué)生創(chuàng)設(shè)一個(gè)寬松愉快的學(xué)習(xí)氛圍,讓學(xué)生體驗(yàn)成功的快樂,為終身學(xué)習(xí)和發(fā)展打打下堅(jiān)實(shí)的基礎(chǔ)。

  本堂課的設(shè)計(jì)是以課程標(biāo)準(zhǔn)和教材為依據(jù),采用發(fā)現(xiàn)式教學(xué)。遵循因材施教的原則,堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動(dòng)性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識(shí)的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對(duì)學(xué)生的啟發(fā)和引導(dǎo),鼓勵(lì)培養(yǎng)學(xué)生大膽猜想,小心求證的科學(xué)研究的思想。

  學(xué)法:

  學(xué)生都渴望與他人交流,合作探究可使學(xué)生感受到合作的重要和團(tuán)隊(duì)的精神力量,增強(qiáng)集體意識(shí),所以本課采用小組合作的學(xué)習(xí)方式,讓學(xué)生遵循“情景問題?實(shí)踐探究?證明結(jié)論?解決實(shí)際問題”的主線進(jìn)行學(xué)習(xí)。讓學(xué)生從活動(dòng)中去觀察、探索、歸納知識(shí),沿著知識(shí)發(fā)生,發(fā)展的脈絡(luò),學(xué)生經(jīng)過自己親身的實(shí)踐活動(dòng),形成自己的經(jīng)驗(yàn),產(chǎn)生對(duì)結(jié)論的感知,實(shí)現(xiàn)對(duì)知識(shí)意義的主動(dòng)構(gòu)建。這不僅讓學(xué)生對(duì)所學(xué)內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的熱情,讓學(xué)生學(xué)會(huì)自主學(xué)習(xí),學(xué)會(huì)探索問題的方法。

  五、教學(xué)支持條件分析

  在本堂課中,準(zhǔn)備利用長方形紙片、剪刀、圓規(guī)和直尺等工具,剪出等腰三角形,利用等腰三角形,通過對(duì)折、多媒體動(dòng)畫演示等方法發(fā)現(xiàn)等腰三角形的性質(zhì),并且借助多媒體信息技術(shù)與實(shí)際動(dòng)手操作加強(qiáng)對(duì)所學(xué)知識(shí)的理解和運(yùn)用。

  六、教學(xué)基本流程

  七、教學(xué)過程設(shè)計(jì)

初中數(shù)學(xué)教學(xué)教案6

  設(shè)計(jì)思想:

  這堂課為章節(jié)復(fù)習(xí)課,教師可以先從總體知識(shí)結(jié)構(gòu)入手,引導(dǎo)學(xué)生逐步回顧所學(xué)的知識(shí),要知道本章主要需要掌握的是如何利用二次函數(shù)及其表示方法、二次函數(shù)的圖像及性質(zhì)解決實(shí)際問題,即二次函數(shù)的應(yīng)用。

  目標(biāo):

  1.知識(shí)與技能

  初步認(rèn)識(shí)二次函數(shù);

  掌握二次函數(shù)的表達(dá)式,體會(huì)二次函數(shù)的意義;

  會(huì)用數(shù)表、圖像和表達(dá)式三種表示方法來表示二次函數(shù),并會(huì)相互轉(zhuǎn)化;

  會(huì)畫二次函數(shù),能利用二次函數(shù)求一元二次方程的近似解;

  利用二次函數(shù)的圖像和性質(zhì)解決相關(guān)實(shí)際問題,靈活應(yīng)用二次函數(shù)。

  2.過程與方法

  通過利用二次函數(shù)的圖像解決問題,體會(huì)數(shù)形結(jié)合的數(shù)學(xué)方法;

  在學(xué)習(xí)探索的過程中逐步體會(huì)和認(rèn)識(shí)二次函數(shù)。

  3.情感、態(tài)度與價(jià)值觀

  體會(huì)從特殊函數(shù)到一般函數(shù)的過渡,注意找函數(shù)之間的聯(lián)系和區(qū)別;

  樹立主動(dòng)參與積極探索嘗試、猜想和發(fā)現(xiàn)的精神;

  注意運(yùn)用數(shù)形結(jié)合的思想,改變過去只利用數(shù)式,而忽略圖形的思想。

  教學(xué)重點(diǎn):二次函數(shù)的圖像和性質(zhì)。

  教學(xué)難點(diǎn):二次函數(shù)y= 的圖像及性質(zhì);二次函數(shù)的應(yīng)用。

  教學(xué)方法:討論法、引導(dǎo)式。

  教學(xué)安排:1課時(shí)。

  教學(xué)媒體:幻燈片。

  教學(xué)過程:

  Ⅰ.知識(shí)復(fù)習(xí)

  師:這堂課是這章的總結(jié)課,下面我們來看這章整體知識(shí)框架圖:(幻燈片)

  觀看這章的知識(shí)整體框架,思考下面的問題:

  1.你能用二次函數(shù)的知識(shí)解決哪些問題?

  2.日常生活中,你在什么地方見到過二次函數(shù)的圖像拋物線的樣子?

  3.你知道二次函數(shù)與一元二次方程的關(guān)系嗎?你能解決什么問題?

  同學(xué)們,想想你們學(xué)習(xí)本章的收獲是__________。

  同學(xué)們相互討論,然后師生互動(dòng)共同探討上面的問題。

 、.典型例題

  例1:某農(nóng)場種植一種蔬菜,銷售員張平根據(jù)往年的銷售情況,對(duì)今年這種蔬菜的銷售價(jià)格進(jìn)行了預(yù)測(cè),預(yù)測(cè)情況如圖2-1,圖中的拋物線(部分)表示這種蔬菜銷售價(jià)與月份之間的關(guān)系,觀察圖象,你能得到關(guān)于這種蔬菜銷售情況的哪些信息?

  要求:(1)請(qǐng)?zhí)峁┧臈l信息;(2)不必求函數(shù)的解析式。

  解:(1)2月份每千克銷售價(jià)是3.5元;(2)2月份每千克銷售價(jià)是0.5元;(3)1月到7月的銷售價(jià)逐月下降;(4)7月到12月的銷售價(jià)逐月上升;(5)2月與7月的銷售差價(jià)是每千克3元;(6)7月份銷售價(jià)最低,1月份銷售價(jià)最高;(7)6月與8月、5月與9與、4月與10月、3月與11月,2月與12月的銷售價(jià)相同。

  (注:此題答案不唯一,以上答案僅供參考,若有其他答案,只要是根據(jù)圖象得出的信息,并且敘述正確即可)

  討論:

  生:對(duì)于這類問題,我常感到無從下手。

  師:要重點(diǎn)看一下橫軸與縱軸分別是哪一個(gè)變量,然后再看一下它的數(shù)據(jù)分別是多少。

  例2:(北京石景山)已知:等邊 中, 是關(guān)于 的.方程 的兩個(gè)實(shí)數(shù)根,若 分別是 上的點(diǎn),且 ,設(shè) 求 關(guān)于 的函數(shù)關(guān)系式,并求出 的最小值。

  解: 是等邊三角形, 。

  不合題意,舍去, 即

  又 ,

  又 ∽

  設(shè) 則

  當(dāng) ,即 為 的重點(diǎn)時(shí), 有最小值6。

  討論:

  生:這個(gè)題目包含的內(nèi)容較多,我感到難度很大。

  師:本題涉及到等邊三角形的性質(zhì),解直角三角形。二次函數(shù)的有關(guān)內(nèi)容,是一道綜合性題目。

  生:對(duì)于這樣的題目如何入手呢?

  師:要認(rèn)真分析題目,明確每一條件的用處。

  例3:某校初三年級(jí)的一場籃球比賽中,如圖2-2,隊(duì)員甲正在投籃,已知球出手時(shí)離地面高 ,與籃球中心的水平距離為7m,當(dāng)球出手后水平距離為4m時(shí)到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m。

 。1)建立如圖2-3的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?

 。2)此時(shí),若對(duì)方隊(duì)員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

  解:(1)

  根據(jù)題意:球出手點(diǎn)、最高點(diǎn)和藍(lán)圈的坐標(biāo)分別為 。

  設(shè)二次函數(shù)的解析式

  代入 兩點(diǎn)坐標(biāo)為

  將 點(diǎn)坐標(biāo)代入解析式;左=右;所以一定能投中。

 。2)將 代入解析式: 蓋帽能獲得成功。

  討論:

  生:此球能否準(zhǔn)確投中,與二次函數(shù)的知識(shí)有何聯(lián)系,我不大清楚。

  師:籃球運(yùn)行的軌跡為拋物線,藍(lán)圈可以看成一個(gè)點(diǎn),所以此球能否準(zhǔn)確投中的問題,實(shí)際上就是看一下該點(diǎn)在不在拋物線上即可。

  例4:如圖2-4,一位籃球運(yùn)動(dòng)員跳起投籃,球沿拋物線 運(yùn)行,然后準(zhǔn)確落入籃框內(nèi),已知籃框的中心離地面的距離為3.05米。

 。1)球在空中運(yùn)行的最大高度為多少米?

 。2)如果該運(yùn)動(dòng)員跳投時(shí),球出手離地面的高度為2.25米,請(qǐng)問他距離籃框中心的水平距離是多少?

  解:(1) 拋物線 的頂點(diǎn)坐標(biāo)為(0,3.5)。

  ∴球在空中運(yùn)行的最大高度為3.5米。

 。2)在 中,當(dāng) 時(shí),

  又 。

  當(dāng) 時(shí), 又

  故運(yùn)動(dòng)員距離籃框中心水平距離為 米。

  討論:

  生:我對(duì)運(yùn)動(dòng)員距離籃框中心水平距離有點(diǎn)迷惑。

  師:運(yùn)動(dòng)員距離籃框中心水平距離,就是過藍(lán)框向地面做垂線,垂足與人的站立點(diǎn)的距離。

  例5:已知拋物線 。

 。1)證明拋物線頂點(diǎn)一定在直線 上。

 。2)若拋物線與 軸交于 兩點(diǎn),當(dāng) ,且 時(shí),求拋物線的解析式。

 。3)若(2)中所求拋物線頂點(diǎn)為 ,與 軸交點(diǎn)在原點(diǎn)上方,拋物線的對(duì)稱軸與 軸腳于點(diǎn) ,直線 與 軸交于點(diǎn) ,點(diǎn) 為拋物線對(duì)稱軸上一動(dòng)點(diǎn),過點(diǎn) 作 ⊥ ,垂足 在線段 上,試問:是否存在點(diǎn) ,使 若存在,求出點(diǎn) 的坐標(biāo);若不存在,請(qǐng)說明理由。

  解:(1) ,

  ∴頂點(diǎn)坐標(biāo)為( )∴頂點(diǎn)在直線 上

 。2)∵拋物線與 軸交于 兩點(diǎn),∴ 。

  即 ,解得 。

  ∵ 或 當(dāng) 時(shí), (與 矛盾,舍去), 。

  當(dāng) 時(shí), 或 。

  (3)∵拋物線與 軸交點(diǎn)在原點(diǎn)的上方,∴

  ∵直線 與 軸交于點(diǎn) ∴設(shè) ,則

  解得 。

  當(dāng) 時(shí),

  當(dāng) 時(shí),

  ∴ 或

  討論:

  生:拋物線頂點(diǎn)在直線 上如何證明?

  師:拋物線的頂點(diǎn)坐標(biāo)可以求出吧?

  生:只要用公式即可。

  師:將拋物線的頂點(diǎn)坐標(biāo)代入直線的解析式,如果適合直線的解析式,則點(diǎn)在直線 上;否則,點(diǎn)不在直線 上。

 、.課堂小結(jié)

  我們這堂課主要需要掌握的是如何利用二次函數(shù)及其表示方法、二次函數(shù)的圖像及性質(zhì)解決實(shí)際問題,即二次函數(shù)的應(yīng)用。

  板書設(shè)計(jì):

  小結(jié)與復(fù)習(xí)

  一、知識(shí)回顧 例2 例3

  二、典型例題 例4 例5

初中數(shù)學(xué)教學(xué)教案7

  一、教學(xué)目標(biāo):

  1、知道一次函數(shù)與正比例函數(shù)的定義。

  2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì)。

  3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系。

  4、掌握直線的平移法則簡單應(yīng)用。

  5、能應(yīng)用本章的基礎(chǔ)知識(shí)熟練地解決數(shù)學(xué)問題。

  二、教學(xué)重、難點(diǎn):

  重點(diǎn):初步構(gòu)建比較系統(tǒng)的函數(shù)知識(shí)體系。

  難點(diǎn):對(duì)直線的平移法則的理解,體會(huì)數(shù)形結(jié)合思想。

  三、教學(xué)過程:

  1、一次函數(shù)與正比例函數(shù)的定義:

  一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)。

  正比例函數(shù):對(duì)于y=kx+b,當(dāng)b=0,k≠0時(shí),有y=kx,此時(shí)稱y是x的正比例函數(shù),k為正比例系數(shù)。

  2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:

 。1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。

 。2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(diǎn)(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(diǎn)(0,b)且與y=kx平行的一條直線。

  基礎(chǔ)訓(xùn)練:

  1、寫出一個(gè)圖象經(jīng)過點(diǎn)(1,— 3)的函數(shù)解析式為?

  2、直線y = — 2X — 2不經(jīng)過第象限,y隨x的增大而。

  3、如果P(2,k)在直線y=2x+2上,那么點(diǎn)P到x軸的距離是?

  4、已知正比例函數(shù)y =(3k—1)x,若y隨x的增大而增大,則k是?

  5、過點(diǎn)(0,2)且與直線y=3x平行的直線是?

  6、若正比例函數(shù)y =(1—2m)x的圖像過點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)當(dāng)x1<x2時(shí),y1>y2,則m的取值范圍是?

  7、若y—2與x—2成正比例,當(dāng)x=—2時(shí),y=4,則x=時(shí),y = —4。

  8、直線y=— 5x+b與直線y=x—3都交y軸上同一點(diǎn),則b的值為?

  9、已知圓O的半徑為1,過點(diǎn)A(2,0)的直線切圓O于點(diǎn)B,交y軸于點(diǎn)C。

  (1)求線段AB的長。

  (2)求直線AC的解析式。

  四、教學(xué)反思:

  教師認(rèn)真?zhèn)湔n,查閱資料,搜集有針對(duì)性的訓(xùn)練題,學(xué)生只要課堂上能按照教師的思路去做就很高效了。課堂訓(xùn)練以競賽的形式進(jìn)行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動(dòng),學(xué)生沒有保持住持久的'緊張狀態(tài)。

  課前先把所有的復(fù)習(xí)任務(wù)都交給學(xué)生完成,教師指導(dǎo)學(xué)生瀏覽教材、查閱資料歸納本章的基本概念、基本性質(zhì)、基本方法,并收集與每個(gè)知識(shí)點(diǎn)相關(guān)的有針對(duì)性的問題,也可以自己編題,同時(shí)要把每一個(gè)問題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學(xué)生展示自己的舞臺(tái),在這個(gè)舞臺(tái)上學(xué)生是主角,在這個(gè)舞臺(tái)上學(xué)生可以成果共享,在這個(gè)舞臺(tái)上學(xué)生收獲著自己的收獲。臺(tái)上他們是主角,臺(tái)下他們也是主角。

  從另一個(gè)角度體會(huì)到了減輕學(xué)生負(fù)擔(dān)的深刻含義,不單指減少學(xué)生課后學(xué)習(xí)的時(shí)間,更重要的是提高學(xué)生學(xué)習(xí)的質(zhì)量、效率,我的這節(jié)課失敗之處就是過分的注重了前者,而忽略了實(shí)效性。那么在今后的復(fù)習(xí)課教學(xué)中我要多思多想、多問多聽(問問老師、聽聽學(xué)生的想法),力求在真正減輕學(xué)生負(fù)擔(dān)的基礎(chǔ)上打造高效課堂。

初中數(shù)學(xué)教學(xué)教案8

  一、教材內(nèi)容及設(shè)置依據(jù)

  【教材內(nèi)容】本節(jié)教材的主要內(nèi)容是通過對(duì)有理數(shù)加法、減法的運(yùn)算的回顧,學(xué)習(xí)包括分?jǐn)?shù)和小數(shù)的有理數(shù)的加減混合運(yùn)算,理解其方法;應(yīng)用有理數(shù)的加減混合運(yùn)算,解決實(shí)際問題。

  【設(shè)置依據(jù)】教材內(nèi)容的確定主要根據(jù)知識(shí)的社會(huì)作用性、教育性原則(對(duì)培養(yǎng)學(xué)生的數(shù)學(xué)思維、數(shù)學(xué)能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進(jìn)一步深造、參加實(shí)際工作和適應(yīng)日常生活準(zhǔn)備條件)、可接受性原則(即考慮學(xué)生的認(rèn)識(shí)水平、接受能力、生理心理特征,又要著眼于學(xué)生的不斷發(fā)展);還要與現(xiàn)實(shí)生活、科技發(fā)展相適應(yīng),逐步深透現(xiàn)代教學(xué)思想。

  二、教材的地位和作用

  本節(jié)內(nèi)容是在學(xué)習(xí)了有理數(shù)的加法、有理數(shù)的減法的基礎(chǔ)上學(xué)習(xí)的,是前面知識(shí)的延伸和加強(qiáng),同時(shí)又是后面所要學(xué)習(xí)的有理數(shù)的乘法、除法及有理數(shù)的混合運(yùn)算的基礎(chǔ),

  特別是減法可以轉(zhuǎn)化為加法為后面的除法可以轉(zhuǎn)化為乘法的學(xué)習(xí)提供了

  類比依據(jù)。也為后面學(xué)習(xí)代數(shù)式的合并同類項(xiàng)及有關(guān)的恒等變形奠定了基礎(chǔ),因此具有承上啟下的重要作用。

  三、對(duì)重點(diǎn)、難點(diǎn)的處理

  【對(duì)重點(diǎn)的處理】本節(jié)的重點(diǎn)是有理數(shù)加減混合運(yùn)算的方法及在實(shí)際生活中的應(yīng)用。為了突出重點(diǎn),教師應(yīng)盡量從實(shí)際問題引入、應(yīng)盡可能的在課堂上創(chuàng)設(shè)具體教學(xué)情境,注重使學(xué)生在具體情境中體會(huì)運(yùn)算的方法。同時(shí)我們也可以根據(jù)學(xué)生的接受情況和每節(jié)課的具體情況,盡可能的把每節(jié)課的“課堂練習(xí)”和“習(xí)題”的內(nèi)容劃分成不同的板塊,如:

  1、知識(shí)鞏固型

  2、實(shí)際應(yīng)用型

  3、方法多變型

  4、知識(shí)拓展型等。

  【對(duì)難點(diǎn)的處理】對(duì)于難點(diǎn)的處理,因?yàn)樾陆滩摹皬?qiáng)調(diào)要給學(xué)生足夠的空間和時(shí)間”,因此教學(xué)時(shí)我們應(yīng)盡量從學(xué)生已有的生活經(jīng)驗(yàn)和已有的知識(shí)經(jīng)驗(yàn)出發(fā),或用“已知”去解決“未知”的思想引導(dǎo)學(xué)生,鼓勵(lì)學(xué)生大膽的猜測(cè)、交流,充分的探索。同時(shí)淡化形式,突出實(shí)質(zhì)(不出現(xiàn)代數(shù)和的定義,只是讓學(xué)生理解有理數(shù)的加減運(yùn)算可以統(tǒng)一成加法以及加法運(yùn)算可以寫成省略括號(hào)及前面加號(hào)的形式,重點(diǎn)是讓學(xué)生通過具體情境對(duì)“代數(shù)和”加以體會(huì))

  四、關(guān)于教學(xué)方法的.選用

  根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,本節(jié)課可采用的方法:

  1、情境體驗(yàn):通過教師創(chuàng)設(shè)貼近學(xué)生生活實(shí)際的教學(xué)情境,讓學(xué)生融會(huì)到課堂中去,產(chǎn)生共鳴,激發(fā)興趣,鼓勵(lì)學(xué)生觀察、分析、探索,加深其對(duì)本節(jié)內(nèi)容的理解,培養(yǎng)學(xué)生解決問題的能力。

  2、引導(dǎo)發(fā)現(xiàn)法:它符合辯證唯物主義中內(nèi)因與外因相互作用的觀點(diǎn),符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則。引導(dǎo)發(fā)現(xiàn)法的關(guān)鍵是通過教師的引導(dǎo)啟發(fā),充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的主動(dòng)性。

  3、小組合作、探究討論:通過合作討論,使學(xué)生形成一個(gè)“學(xué)習(xí)共同體”,在這個(gè)共同體內(nèi)相互交流、相互溝通、相互啟發(fā)、相互補(bǔ)充,分享彼此的思考、經(jīng)驗(yàn)和知識(shí),交流彼此的情感、體驗(yàn)和觀念,共同體驗(yàn)成功的喜悅,使學(xué)生體會(huì)到集體的力量,形成合作的意識(shí),產(chǎn)生合作的愿望。

  五、關(guān)于學(xué)法的指導(dǎo)

  “授人以魚,不如授人以漁”,在教給學(xué)生知識(shí)的同時(shí),要教給他們好的學(xué)習(xí)方法,讓他們“會(huì)學(xué)習(xí)”在本節(jié)課的教學(xué)中,在提出問題后,要鼓勵(lì)學(xué)生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養(yǎng)了思維能力。同時(shí)意識(shí)到:數(shù)學(xué)是生活實(shí)際中的數(shù)學(xué)、大自然中的數(shù)學(xué),萌生了用數(shù)學(xué)解決實(shí)際問題的意識(shí)、愿望。

  六、課時(shí)安排:1課時(shí)

  教學(xué)程序:

  一、復(fù)習(xí)鋪墊:

  首先利用多媒體出示一組有關(guān)有理數(shù)的加法、減法的題目,讓學(xué)生進(jìn)行速算比賽,看誰做的又對(duì)又快。

  1、45+(-23)2、9-(-5)

  3、-28-(-37)4、(-13)+0

  5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)

  從四排學(xué)生中個(gè)推選一名學(xué)生代表板演6、7、8、題。

  通過比賽的方式,符合學(xué)生的心理特點(diǎn),迎合了學(xué)生好勝的心理,激起了學(xué)生學(xué)習(xí)的內(nèi)在動(dòng)力,激發(fā)了學(xué)習(xí)的興趣。

  然后教師與學(xué)生一起對(duì)題目進(jìn)行評(píng)判,對(duì)優(yōu)勝的學(xué)生進(jìn)行表揚(yáng),對(duì)其他學(xué)生加以鼓勵(lì),使他們意識(shí)到“勝敗乃兵家常事”,關(guān)鍵要有信心,要有高昂的斗志。通過練習(xí),學(xué)生已在不知不覺中復(fù)習(xí)了有理數(shù)的加法、減法法則,特別是減法法則,加深了印象,這符合教學(xué)論中的鞏固性原則,為后面學(xué)習(xí)有理數(shù)的加減混合運(yùn)算奠定了基礎(chǔ)。

  二、新知探索:

  1、出示引例1:一架飛機(jī)作特技表演,起飛后的高度變化如下表:高度變化記作

  上升4.5千米+4.5千米

  下降3.2千米-3.2千米

  上升1.1千米+1.1千米

  下降1.4千米-1.4千米

  此時(shí)飛機(jī)比起飛點(diǎn)高了多少米?

  讓學(xué)生分組探究討論,讓學(xué)生發(fā)表自己的見解,不難得出兩種算法:

  ①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4

 。1.3+1.1+(-1.4)=1.3+1.1-1.4

 。2.4+(-1.4)=2.4-1.4

 。1千米=1千米

  教師隨之提出問題:比較以上兩種算法,你發(fā)現(xiàn)了什么?通過學(xué)生的合作討論、教師的引導(dǎo)、規(guī)納、總結(jié)可得出:加減法混合運(yùn)算可以統(tǒng)一成加法;加法運(yùn)算可以寫成省略括號(hào)及前面加號(hào)的形式。使學(xué)生在解決問題的過程中體會(huì)到“代數(shù)和“的含義。這里不要求出現(xiàn)“代數(shù)和”的名稱。

初中數(shù)學(xué)教學(xué)教案9

  一、教學(xué)目標(biāo)

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;

  4、通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

  5、通過二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):

 。1)二次根的意義;

 。2)二次根式中字母的取值范圍。

  難點(diǎn):確定二次根式中字母的取值范圍。

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合。

  四、教學(xué)過程

  (一)復(fù)習(xí)提問

  1、什么叫平方根、算術(shù)平方根?

  2、說出下列各式的意義,并計(jì)算

  (二)引入新課

  新課:二次根式

  定義:式子叫做二次根式。

  對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。

 。2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的.“外在形態(tài)”。請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。

  例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

  例2 x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?

  解:略。

  說明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。

  例3當(dāng)字母取何值時(shí),下列各式為二次根式:

  分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。

  (2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。

  (3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的條件:

  分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

 。2)由,得3a—1>0,解得。

 。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。

  (4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。

初中數(shù)學(xué)教學(xué)教案10

  一、教學(xué)目標(biāo)

  1、知識(shí)與技能目標(biāo)

  掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。

  2、能力與過程目標(biāo)

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證等能力。

  3、情感與態(tài)度目標(biāo)

  通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。

  難點(diǎn):有理數(shù)乘法法則的探索過程,符號(hào)法則及對(duì)法則的理解。

  三、教學(xué)過程

  1、創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學(xué)生:26米。

  教師:能寫出算式嗎?學(xué)生:

  教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問題

  2、小組探索、歸納法則

 。1)教師出示以下問題,學(xué)生以組為單位探索。

  以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较颍蛭鞯?方向?yàn)樨?fù)方向。

 、 2 ×3

  2看作向東運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。

  結(jié)果:向運(yùn)動(dòng)米

  2 ×3=

  ② —2 ×3

  —2看作向西運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。

  結(jié)果:向運(yùn)動(dòng)米

  —2 ×3=

  ③ 2 ×(—3)

  2看作向東運(yùn)動(dòng)2米,×(—3)看作向反方向運(yùn)動(dòng)3次。

  結(jié)果:向運(yùn)動(dòng)米

  2 ×(—3)=

 、埽ā2)×(—3)

  —2看作向西運(yùn)動(dòng)2米,×(—3)看作向反方向運(yùn)動(dòng)3次。

  結(jié)果:向運(yùn)動(dòng)米

 。ā2)×(—3)=

 。2)學(xué)生歸納法則

 、俜(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?

 。+)×(+)=()同號(hào)得

  (—)×(+)=()異號(hào)得

 。+)×(—)=()異號(hào)得

 。ā粒ā=()同號(hào)得

  ②積的絕對(duì)值等于。

 、廴魏螖(shù)與零相乘,積仍為。

 。3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。

  3、運(yùn)用法則計(jì)算,鞏固法則。

 。1)教師按課本P75例1板書,要求學(xué)生述說每一步理由。

  (2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為。

  (3)學(xué)生做練習(xí),教師評(píng)析。

  (4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。

初中數(shù)學(xué)教學(xué)教案11

  一.學(xué)習(xí)目標(biāo):

  1.掌握二次根式的運(yùn)算方法,明確數(shù)的運(yùn)算順序、運(yùn)算律及乘法公式在根式的運(yùn)算中仍然適用;

  2.正確運(yùn)用二次根式的`性質(zhì)及運(yùn)算法則進(jìn)行二次根式的混合運(yùn)算.

  二.學(xué)習(xí)重點(diǎn):正確運(yùn)用二次根式的性質(zhì)及運(yùn)算法則進(jìn)行二次根式的混合運(yùn)算.

  學(xué)習(xí)難點(diǎn):二次根式計(jì)算的結(jié)果要是最簡二次根式.

  三.過程

  知識(shí)準(zhǔn)備

  1.滿足下列條的二次根式是最簡二次根式.

  2.回憶有理數(shù),整式混合運(yùn)算的順序.

  3.回憶并整理整式的乘法公式.

  方法探究1

 、(512+23)×15 ⑵(3+10)(2-5)

  歸納: .

  嘗試練習(xí):

 、(3+22)×6 ⑵(827-53)6 ⑶(6-3+1)×23

 、(3-22)(33-2) ⑸(22-3)(3+2) ⑹(5-6)(3+2)

  方法探究2

 、(3+2)(3-2) ⑵(3+25)2

  歸納: .

  嘗試練習(xí):

  ⑴(5+1)(5-1) ⑵(7+5)(5-7) ⑶(25-32)(25+32) ⑷(a+b)(a-b)

 、(3-2)2 ⑹(32-45)2 ⑺(3-22)(22-3) ⑻(a-b)2

 、(1-23)(1+23)-(1+3)2 ⑽(3+2-5)(3?2?5)

  例題解析

  1. 計(jì)算:(22-3)20xx( 22+3)20xx. 2. 若x=10-3,求代數(shù)式x2+6x+11的值.

  3. 若x=11+72, y=11—72,求代數(shù)式x2-xy+y2的值.

  內(nèi)反饋

  1. 計(jì)算12(2-3)= .

  2. 計(jì)算⑴(2+3)(2-3)= ; ⑵(5-2)20xx( 5+2)20xx= .

  3. 計(jì)算:

 、12(75+313-48) ⑵(1327-24-323)12 ⑶(23-5)(2+3)

 、(5-3+2)(5+3-2) ⑸(312-213+48)÷23

  4. 已知a=3+2 ,b=3-2,求下列各式的值.

  ⑴a2-b2 ⑵1a-1b ⑶a2-ab+b2

  5. 若x=3+1,求代數(shù)式x2-2x-3的值.

初中數(shù)學(xué)教學(xué)教案12

  圓柱、圓錐、圓臺(tái)和球

  總 課 題

  空間幾何體

  總課時(shí)

  第2課時(shí)

  分 課 題

  圓柱、圓錐、圓臺(tái)和球

  分課時(shí)

  第2課時(shí)

  目標(biāo)

  了解圓柱、圓錐、圓臺(tái)和球的有關(guān)概念.認(rèn)識(shí)圓柱、圓錐、圓臺(tái)和球及其簡單組合體的機(jī)構(gòu)特征.

  重點(diǎn)難點(diǎn)

  圓柱、圓錐、圓臺(tái)和球的概念的理解.

  1引入新課

  1.下面幾何體有什么共同特點(diǎn)或生成規(guī)律?

  這些幾何體都可看做是一個(gè)平面圖形繞某一直線旋轉(zhuǎn)而成的.

  2.圓柱、圓錐、圓臺(tái)和球的有關(guān)概念.

  3.圓柱、圓錐、圓臺(tái)和球的表示.

  4.旋轉(zhuǎn)體的有關(guān)概念.

  1例題剖析

  例1

  如圖,將直角梯形 繞 邊所在的直線旋轉(zhuǎn)一周,由此形成的.幾何體是由哪些簡單幾何體構(gòu)成的?

  例2 指出圖 、圖 中的幾何體是由哪些簡單的幾何體構(gòu)成的.

  圖 圖

  例3

  直角三角形 中, ,將三角形 分別繞邊 , , 三邊所在直線旋轉(zhuǎn)一周,由此形成的幾何體是哪一種簡單的幾何體?或由哪幾種簡單的幾何體構(gòu)成?

  1鞏固練習(xí)

  1.指出下列幾何體分別由哪些簡單幾何體構(gòu)成.

  2.如圖,將平行四邊形 繞 邊所在的直線旋轉(zhuǎn)一周,由此形成的幾何體是由哪些簡單幾何體構(gòu)成的?

  3.充滿氣的車輪內(nèi)胎可以通過什么圖形旋轉(zhuǎn)生成?

  1課堂小結(jié)

  圓柱、圓錐、圓臺(tái)和球的有關(guān)概念及圖形特征.1課后訓(xùn)練

  一 基礎(chǔ)題

  1.下列幾何體中不是旋轉(zhuǎn)體的是( )

  2.圖中的幾何體可由一平面圖形繞軸旋轉(zhuǎn) 形成,該平面圖形是( )

  ABCD

  3.用平行與圓柱底面的平面截圓柱,截面是_____________________________________.

  4._____________________可以看作圓柱的一個(gè)底面收縮為圓心時(shí),形成的空間幾何體.

  5.用平行于圓錐底面的一平面去截此圓錐,則底面和截面間的部分的名稱是_________.

  6.如圖是一個(gè)圓臺(tái),請(qǐng)標(biāo)出它的底面、軸、母線,并指出它是怎樣生成的.

  二 提高題

  7.請(qǐng)指出圖中的幾何體是由哪些簡單幾何體構(gòu)成的.

  三 能力題

  8.如圖,將直角梯形 繞 、 邊所在直線旋轉(zhuǎn)一周,由此形成的幾何體分別是由哪些簡單幾何體構(gòu)成的?

  ADCB圖1A圖2DBC

初中數(shù)學(xué)教學(xué)教案13

  一、教材內(nèi)容

  人民教育出版社《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》六年級(jí)下冊(cè)第2~4頁例1、例2。

  二、教學(xué)目標(biāo)

  1.引導(dǎo)學(xué)生在熟悉的生活情境中初步認(rèn)識(shí)負(fù)數(shù),能正確地讀、寫正數(shù)和負(fù)數(shù);知道0不是正數(shù)也不是負(fù)數(shù)。

  2.使學(xué)生初步學(xué)會(huì)用負(fù)數(shù)表示一些日常生活中的實(shí)際問題,體驗(yàn)數(shù)學(xué)與生活的聯(lián)系。

  3.結(jié)合負(fù)數(shù)的歷史,對(duì)學(xué)生進(jìn)行愛國主義教育;培養(yǎng)學(xué)生良好的數(shù)學(xué)情感和數(shù)學(xué)態(tài)度。

  三、教學(xué)重、難點(diǎn)

  認(rèn)識(shí)負(fù)數(shù)的意義。

  四、教學(xué)過程

  (一)談話交流

  談話:同學(xué)們,剛才一上課大家就做了一組相反的動(dòng)作,是什么?(起立、坐下。)今天的數(shù)學(xué)課我們就從這個(gè)話題聊起。(板書:相反。)我們周圍有很多的自然和社會(huì)現(xiàn)象中都存在著相反的情況,請(qǐng)看屏幕:(課件播放圖片。)太陽每天從東方升起,西方落下;公交車的站點(diǎn)有人上車和下車;繁華的街市上有買也有賣;激烈的賽場上有輸也有贏……你能舉出一些這樣的現(xiàn)象嗎?

  (二)教學(xué)新知

  1.表示相反意義的量

  (1)引入實(shí)例

  談話:如果沿著剛才的話題繼續(xù)“聊”下去的話,就很自然地走進(jìn)數(shù)學(xué),我們一起來看幾個(gè)例子(課件出示)。

 、倭昙(jí)上學(xué)期轉(zhuǎn)來6人,本學(xué)期轉(zhuǎn)走6人。

 、趶埌⒁套錾,二月份盈利1500元,三月份虧損200元。

  ③與標(biāo)準(zhǔn)體重比,小明重了2.5千克,小華輕了1.8千克。

 、芤粋(gè)蓄水池夏季水位上升米,冬季水位下降米。

  指出:這些相反的詞語和具體的數(shù)量結(jié)合起來,就成了一組組“相反意義的量”。(補(bǔ)充板書:相反意義的量。)

  (2)嘗試

  怎樣用數(shù)學(xué)方式來表示這些相反意義的.量呢?

  請(qǐng)同學(xué)們選擇一例,試著寫出表示方法。

  (3)展示交流

  2.認(rèn)識(shí)正、負(fù)數(shù)

  (1)引入正、負(fù)數(shù)

  談話:剛才,有同學(xué)在6的前面寫上“+”表示轉(zhuǎn)來6人,添上“-”表示轉(zhuǎn)走6人(板書:+6-6),這種表示方法和數(shù)學(xué)上是完全一致的。

  介紹:像“-6”這樣的數(shù)叫負(fù)數(shù)(板書:負(fù)數(shù));這個(gè)數(shù)讀作:負(fù)六。

  “-”,在這里有了新的意義和作用,叫“負(fù)號(hào)”!+”是正號(hào)。

  像“+6”是一個(gè)正數(shù),讀作:正六。我們可以在6的前面加上“+”,也可以省略不寫(板書:6)。其實(shí),過去我們認(rèn)識(shí)的很多數(shù)都是正數(shù)。

  (2)試一試

  請(qǐng)你用正、負(fù)數(shù)來表示出其它幾組相反意義的量。

  寫完后,交流、檢查。

  3.聯(lián)系實(shí)際,加深認(rèn)識(shí)

  (1)說一說存折上的數(shù)各表示什么?(教學(xué)例2。)

  (2)聯(lián)系生活實(shí)際舉出一組相反意義的量,并用正、負(fù)數(shù)來表示。

 、偻澜涣鳌

 、谌嘟涣。根據(jù)學(xué)生發(fā)言板書。

  這樣的正、負(fù)數(shù)能寫完嗎?(板書:……)

  強(qiáng)調(diào)指出:像過去我們熟悉的這些整數(shù)、小數(shù)、分?jǐn)?shù)等都是正數(shù),也叫正整數(shù)、正小數(shù)、正分?jǐn)?shù);在它們的前面添上負(fù)號(hào),就成了負(fù)整數(shù)、負(fù)小數(shù)、負(fù)分?jǐn)?shù),統(tǒng)稱負(fù)數(shù)。

  4.進(jìn)一步認(rèn)識(shí)“0”

  (1)看一看、讀一讀

  談話:接下來,我們一起來看屏幕:這是去年12月份某天,部分城市的氣溫情況(課件出示)。

  哈爾濱:-18℃~-5℃

  北京:-6℃~6℃

  深圳:15℃~25℃

  溫度中有正數(shù)也有負(fù)數(shù),請(qǐng)把負(fù)數(shù)讀出來。

  (2)找一找、說一說

  我們來看首都北京當(dāng)天的溫度,“-5℃”讀作:“負(fù)五攝氏度”或“負(fù)五度”,表示零下5度;5℃又表示什么?

  你能在溫度計(jì)上找出這兩個(gè)溫度所在的刻度嗎?(課件出示溫度計(jì),沒有刻度數(shù))為什么?

  現(xiàn)在你能很快找出來嗎?(給出溫度計(jì)的刻度數(shù),生到前面指。)

  說一說,你怎么這么快就找到了?

  (課件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

  你能很快找到12℃、-3℃嗎?

  (3)提升認(rèn)識(shí)

  請(qǐng)學(xué)生觀察溫度計(jì),說一說有什么發(fā)現(xiàn)?

  在學(xué)生發(fā)言的基礎(chǔ)上,強(qiáng)調(diào):以0℃為分界點(diǎn),零上溫度都用正數(shù)來表示,零下溫度都用負(fù)數(shù)來表示。(或負(fù)數(shù)都表示零下溫度,正數(shù)都表示零上溫度。)

  “0”是正數(shù),還是負(fù)數(shù)呢?

  在學(xué)生發(fā)言的基礎(chǔ)上,強(qiáng)調(diào):“0”作為正數(shù)和負(fù)數(shù)的分界點(diǎn),它既不是正數(shù)也不是負(fù)數(shù)。

  (4)總結(jié)歸納

  如果過去我們所認(rèn)識(shí)的數(shù)只分為正數(shù)和0的話,那么今天我們可以對(duì)“數(shù)”進(jìn)行重新分類:

  5.練一練

  讀一讀,填一填。

  6.出示課題

  同學(xué)們,想一想,今天你學(xué)習(xí)了什么新知識(shí)?認(rèn)識(shí)了哪位新朋友?你能為今天的數(shù)學(xué)課定一個(gè)課題嗎?

  根據(jù)學(xué)生的回答總結(jié)本節(jié)課所學(xué)內(nèi)容,并選擇板書課題:認(rèn)識(shí)負(fù)數(shù)。

初中數(shù)學(xué)教學(xué)教案14

  隨著科學(xué)技術(shù)的發(fā)展,教育資源和教育需求也隨之增長和變化。我校進(jìn)行了初中數(shù)學(xué)分層教學(xué)課題研究,而分層次備課是搞好分層教學(xué)的關(guān)鍵,教師應(yīng)在吃透教材、大綱的情況下,按照不同層次學(xué)生的實(shí)際情況,設(shè)計(jì)好分層次教學(xué)的全過程。本文將結(jié)合本人的教學(xué)經(jīng)驗(yàn),對(duì)分層教學(xué)教案設(shè)計(jì)進(jìn)行初步探討。

  1教學(xué)目標(biāo)的制定

  制定具體可行的教學(xué)目標(biāo),先要分清哪些屬于共同目標(biāo),哪些屬于層次目標(biāo)。并在知識(shí)與技能、過程與方法、情感態(tài)度與價(jià)值觀三個(gè)方面對(duì)不同層次的學(xué)生制定具體的要求。

  2教法學(xué)法的制定

  制定教法學(xué)法應(yīng)結(jié)合各層次學(xué)生的具體情況而定,如對(duì)A層學(xué)生少講多練,注重培養(yǎng)其自學(xué)能力;對(duì)B層學(xué)生,則實(shí)行精講精練,注重課本上的例題和習(xí)題的處理;對(duì)C層學(xué)生則要求要低,淺講多練,弄懂基本概念,掌握必要的基礎(chǔ)知識(shí)和基本技能。

  3教學(xué)重難點(diǎn)的制定

  教學(xué)重難點(diǎn)的制定也應(yīng)結(jié)合各層次學(xué)生的具體情況而定。

  4教學(xué)過程的設(shè)計(jì)

  4.1情境導(dǎo)向,分層定標(biāo)。教師以實(shí)例演示、設(shè)問等多種方法導(dǎo)入新課。要利用各種教學(xué)資料創(chuàng)設(shè)恰當(dāng)?shù)膶W(xué)習(xí)情境為各層學(xué)生呈現(xiàn)適合于本層學(xué)生水平學(xué)習(xí)的內(nèi)容。

  4.2分層練習(xí),探討生疑。學(xué)生對(duì)照各自的'目標(biāo)分層自學(xué)。教師要鼓勵(lì)學(xué)生主動(dòng)實(shí)踐,自覺地去發(fā)現(xiàn)問題、探討問題、解決問題。

  4.3集體回授,異步釋疑!凹w回授”主要是針對(duì)人數(shù)占優(yōu)勢(shì)的B層學(xué)生,為解決具有共性的問題而組織的一種集體教學(xué)活動(dòng)。教師為那些來不及解決的、不具有共性的問題分先后在層內(nèi)釋疑即“異步釋疑”。

  5練習(xí)與作業(yè)的設(shè)計(jì)

  教師在設(shè)計(jì)練習(xí)或布置作業(yè)時(shí)要遵循“兩部三層”的原則!皟刹俊笔侵妇毩(xí)或作業(yè)分為必做題和選做題兩部分;“三層”是指教師在處理練習(xí)時(shí)要具有三個(gè)層次:第一層次為知識(shí)的直接運(yùn)用和基礎(chǔ)練習(xí);第二、三兩層次的題目為選做題,這樣可使A層學(xué)生有練習(xí)的機(jī)會(huì),B、C兩層學(xué)生也有充分發(fā)展的余地。

  分層教學(xué)下教師不能再“拿一個(gè)教案用到底”,而要精心地設(shè)計(jì)課堂教學(xué)活動(dòng),針對(duì)不同層次的學(xué)生選擇恰當(dāng)?shù)姆椒ê褪侄,了解學(xué)生的實(shí)際需求,關(guān)心他們的進(jìn)步,改革課堂教學(xué)模式,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)主動(dòng)性,創(chuàng)造良好的課堂教學(xué)氛圍,形成成功的激勵(lì)機(jī)制,確保每一個(gè)學(xué)生都有所進(jìn)步。

初中數(shù)學(xué)教學(xué)教案15

  教學(xué)目標(biāo):

  1、 使學(xué)生會(huì)列一元一次方程解有關(guān)應(yīng)用題。

  2、 培養(yǎng)學(xué)生分析解決實(shí)際問題的能力。

  復(fù)習(xí)引入:

  1、在小學(xué)里我們學(xué)過有關(guān)工程問題的.應(yīng)用題,這類應(yīng)用題中一般有工作總量、工作時(shí)間、工作效率這三個(gè)量。這三個(gè)量的關(guān)系是:

 。1)__________ (2)_________ (3)_________

  人們常規(guī)定工程問題中的工作總量為______。

  2、由以上公式可知:一件工作,甲用a小時(shí)完成,則甲的工作量可看成________,工作時(shí)間是________,工作效率是_______。若這件工作甲用6小時(shí)完成,則甲的工作效率是_______。

  講授新課:

  1、例題講解:

  一件工作,甲單獨(dú)做20小時(shí)完成,乙單獨(dú)做12小時(shí)完成。

  問:甲乙合做,需幾小時(shí)完成這件工作?

  (1)首先由一名至兩名學(xué)生閱讀題目。

 。2)引導(dǎo)

 、:這道題目的已知條件是什么?

  Ⅱ:這道題目要求什么問題?

 、螅哼@道題目的相等關(guān)系是什么?

 。3)由一學(xué)生口頭設(shè)出求知數(shù),并列出方程,師生共同解答;同時(shí)教師在黑板上寫出解題過程,形成板書。

  2、練習(xí):

  有一個(gè)蓄水池,裝有甲、乙、丙三個(gè)進(jìn)水管,單獨(dú)開甲管,6分鐘可注滿空水池;單獨(dú)開乙管,12分鐘可注滿空水池;單獨(dú)開丙管,18分鐘可注滿空水池,如果甲、乙、丙三管齊開,需幾分鐘可注滿空水池?

  此題的處理方法:

 、瘢合扔梢幻麑W(xué)生閱讀題目;

  Ⅱ:然后由兩名學(xué)生板演;

【初中數(shù)學(xué)教學(xué)教案】相關(guān)文章:

初中數(shù)學(xué)的教學(xué)教案02-05

2023初中數(shù)學(xué)教學(xué)教案02-14

初中數(shù)學(xué)教學(xué)教案15篇12-19

初中數(shù)學(xué)教學(xué)教案(精選20篇)06-28

初中數(shù)學(xué)教學(xué)教案精選15篇12-19

初中數(shù)學(xué)教學(xué)教案(15篇)12-19

初中數(shù)學(xué)的教學(xué)教案7篇02-05

初中數(shù)學(xué)的教學(xué)教案(7篇)02-05

初中數(shù)學(xué)的教學(xué)教案6篇02-05