- 相關(guān)推薦
高中不等式教案
作為一名老師,往往需要進行教案編寫工作,借助教案可以有效提升自己的教學能力。我們該怎么去寫教案呢?以下是小編收集整理的高中不等式教案,僅供參考,歡迎大家閱讀。
教學目標
1.理解不等式的性質(zhì),掌握不等式各個性質(zhì)的條件和結(jié)論之間的邏輯關(guān)系,并掌握它們的證明方法以及功能、運用;
2.掌握兩個實數(shù)比較大小的一般方法;
3.通過不等式性質(zhì)證明的學習,提高學生邏輯推論的能力;
4.提高本節(jié)內(nèi)容的學習,;培養(yǎng)學生條理思維的習慣和認真嚴謹?shù)膶W習態(tài)度;
教學建議
1.教材分析
。1)知識結(jié)構(gòu)
本節(jié)首先通過數(shù)形結(jié)合,給出了比較實數(shù)大小的方法,在這個基礎(chǔ)上,給出了不等式的性質(zhì),一共講了五個定理和三個推論,并給出了嚴格的證明。
知識結(jié)構(gòu)圖
(2)重點、難點分析
在“不等式的性質(zhì)”一節(jié)中,聯(lián)系了實數(shù)和數(shù)軸的對應關(guān)系、比較實數(shù)大小的方法,復習了初中學過的不等式的基本性質(zhì)。
不等式的性質(zhì)是穿越本章內(nèi)容的一條主線,無論是算術(shù)平均數(shù)與幾何平均數(shù)的定理的證明及其應用,不等式的證明和解一些簡單的不等式,無不以不等式的性質(zhì)作為基礎(chǔ)。
本節(jié)的重點是比較兩個實數(shù)的大小,不等式的五個定理和三個推論;難點是不等式的性質(zhì)成立的條件及其它的應用。
①比較實數(shù)的大小
教材運用數(shù)形結(jié)合的觀點,從實數(shù)與數(shù)軸上的點一一對應出發(fā),與初中學過的知識“在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大”利用數(shù)軸可以比較數(shù)的大小。
指出比較兩實數(shù)大小的方法是求差比較法:
比較兩個實數(shù)a與b的大小,歸結(jié)為判斷它們的差a-b的符號,而這又必然歸結(jié)到實數(shù)運算的符號法則。
比較兩個代數(shù)式的大小,實際上是比較它們的值的大小,而這又歸結(jié)為判斷它們的差的符號。
、诶砬宀坏仁降膸讉性質(zhì)的關(guān)系
教材中的不等式共5個定理3個推論,是從證明過程安排順序的.從這幾個性質(zhì)的分類來說,可以分為三類:
2.教法建議
本節(jié)課的核心是培養(yǎng)學生的變形技能,訓練學生的推理能力.為今后證明不等式、解不等式的學習奠定技能上和理論上的基礎(chǔ).
授課方法可以采取講授與問答相結(jié)合的方式.通過問答形式不斷地給學生設(shè)置疑問(即:設(shè)疑);對教學難點,再由講授形式解決疑問.(即:解疑).主要思路是:教師設(shè)疑→學生討論→教師啟發(fā)→解疑.
教學過程可分為:發(fā)現(xiàn)定理、定理證明、定理應用,采用由形象思維到抽象思維的過渡,發(fā)現(xiàn)定理、證明定理.采用類比聯(lián)想,變形轉(zhuǎn)化,應用定理或應用定理的證明思路;解決一些較簡單的證明題.
第一課時
教學目標
1.掌握實數(shù)的運算性質(zhì)與大小順序間關(guān)系;
2.掌握求差法比較兩實數(shù)或代數(shù)式大;
3.強調(diào)數(shù)形結(jié)合思想。
教學重點
比較兩實數(shù)大小
教學難點
理解實數(shù)運算的符號法則
教學方法
啟發(fā)式
教學過程
【高中不等式教案】相關(guān)文章:
不等式的性質(zhì)教案01-23
高中教案教案03-05
一元一次不等式組的數(shù)學教案03-25
高中函數(shù)教案11-28
高中電阻的教案11-28
高中電流的教案11-28
高中教學教案02-04
高中舞蹈教案03-17
[經(jīng)典]高中教案教案4篇03-05