久久精品99久久|国产剧情网站91|天天色天天干超碰|婷婷五天月一av|亚州特黄一级片|亚欧超清无码在线|欧美乱码一区二区|男女拍拍免费视频|加勒比亚无码人妻|婷婷五月自拍偷拍

教案

二次根式教案

時間:2024-09-12 07:23:58 教案 我要投稿

二次根式教案

  作為一名無私奉獻(xiàn)的老師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,借助教案可以讓教學(xué)工作更科學(xué)化。怎樣寫教案才更能起到其作用呢?以下是小編為大家收集的二次根式教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

二次根式教案

二次根式教案1

  一、教學(xué)目標(biāo)

  1.理解分母有理化與除法的關(guān)系.

  2.掌握二次根式的分母有理化.

  3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.

  4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想

  二、教學(xué)設(shè)計

  小結(jié)、歸納、提高

  三、重點、難點解決辦法

  1.教學(xué)重點:分母有理化.

  2.教學(xué)難點:分母有理化的技巧.

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、多媒體

  六、師生互動活動設(shè)計

  復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主

  七、教學(xué)過程

  【復(fù)習(xí)提問】

  二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.

  例1 說出下列算式的運(yùn)算步驟和順序:

 。1) (先乘除,后加減).

  (2) (有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運(yùn)算).

 。3)辨別有理化因式:

  有理化因式: 與 , 與 , 與 …

  不是有理化因式: 與 , 與 …

  化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

  例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

  引入新課題.

  【引入新課】

  化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的`有理化因式,而這個式子就是 ,從而可將式子化簡.

  例2 把下列各式的分母有理化:

 。1) ; (2) ; (3)

  解:略.

  注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

二次根式教案2

  教學(xué)目標(biāo)

  1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

  2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

  教學(xué)重點和難點

  重點:含二次根式的式子的混合運(yùn)算.

  難點:綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡和計算含二次根式的式子.

  教學(xué)過程設(shè)計

  一、復(fù)習(xí)

  1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

  計算結(jié)果要把分母有理化.

  3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

  4.在含有二次根式的式子的化簡及求值等問題中,常運(yùn)用三個可逆的式子:

  二、例題

  例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

  (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

  x-2且x0.

  解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個二次根式的被開方數(shù)的'分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

  解 因為1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

  分析:先把第二個式子化簡,再把兩個式子進(jìn)行通分,然后進(jìn)行計算.

  注意:

  所以在化簡過程中,

  例6

  分析:如果把兩個式子通分,或把每一個式子的分母有理化再進(jìn)行計算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹喗荩?/p>

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習(xí)

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計算:

  四、小結(jié)

  1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.

  2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

  3.運(yùn)用二次根式的四個基本性質(zhì)進(jìn)行二次根式的運(yùn)算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

  4.通過例題的討論,要學(xué)會綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

  五、作業(yè)

  1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡二次根式:

二次根式教案3

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的加減乘除混合運(yùn)算.

  2.內(nèi)容解析

  二次根式的混合運(yùn)算是本章所學(xué)內(nèi)容的綜合運(yùn)用,運(yùn)算過程中用到乘法分配律,還需用多項式的乘法法則和整式的乘法公式,教學(xué)中要注意讓學(xué)生體會二次根式的運(yùn)算與整式運(yùn)算的聯(lián)系.

  基于以上分析,可以確定本課的教學(xué)重點是運(yùn)用乘法分配律、多項式乘法法則及乘法公式進(jìn)行二次根式的加減乘除混合運(yùn)算.

  二、目標(biāo)和目標(biāo)解析

  1.目標(biāo)

 。1)掌握二次根式混合運(yùn)算的法則,合理使用運(yùn)算律.

 。2)靈活運(yùn)用運(yùn)算律、乘法公式等技巧,使計算簡便.

  2.目標(biāo)解析

  達(dá)成目標(biāo)(1)的標(biāo)志是:學(xué)生能在有理數(shù)混合運(yùn)算及整式的混合運(yùn)算基礎(chǔ)上,類比得出二次根式混合運(yùn)算的法則及算理.

  目標(biāo)(2)是通過類比整式乘法公式讓學(xué)生能熟練進(jìn)行二次根式混合運(yùn)算.

  三、教學(xué)問題診斷分析

  二次根式的混合運(yùn)算,困難在于讓學(xué)生體會二次根式的運(yùn)算與整式運(yùn)算的聯(lián)系.在二次根式運(yùn)算中,法則和乘法公式仍然適用.

  本課的教學(xué)難點是:二次根式運(yùn)算中,靈活運(yùn)用多項式乘法法則及乘法公式.

  四、教學(xué)過程設(shè)計

  (一)提出問題

  問題1:計算

 。1);(2).

  問題2:計算

 。1);(2).

  師生活動:學(xué)生獨立完成計算,小結(jié)算理.

  追問1:問題1、2中的字母、可以代表哪些數(shù)與式.

  師生活動:學(xué)生自由發(fā)言,引出、可代表二次根式.

  設(shè)計意圖:類比整式運(yùn)算引出二次根式混合運(yùn)算的法則與算理.

 。ǘ┨剿餍轮鉀Q問題

  問題3:類比問題,完成計算:

  (1);(2).

  師生活動:學(xué)生獨立思考完成,請學(xué)生板演,教師適時引導(dǎo),兩題均用乘法分配律.

  設(shè)計意圖:讓學(xué)生體會到數(shù)的擴(kuò)充過程中運(yùn)算律的一致性.

  問題4:在問題2中,若令,你能計算下列式子的.值嗎?

 。1);(2).

  師生活動:學(xué)生通過類比思考得出結(jié)論,教師引導(dǎo)學(xué)生得出二次根式運(yùn)算中,多項式乘法法則和乘法公式仍然適用.

  設(shè)計意圖:讓學(xué)生感受到數(shù)的擴(kuò)充過程中數(shù)式通性.

  (三)典型例題

  例1計算:(1);(2).

  例2計算:(1);

 。2);

 。3).

  師生活動:學(xué)生獨立完成計算,教師適時給予評價.

  設(shè)計意圖:加強(qiáng)學(xué)生運(yùn)算技能的訓(xùn)練,進(jìn)一步讓學(xué)生認(rèn)識二次根式和整式性質(zhì)運(yùn)算法則上的一致性.例2、例3在不能用乘法公式的情況下,可用多項式乘法法則.

 。ㄋ模┱n堂小結(jié)

  整式的運(yùn)算法則和乘法公式中的字母意義非常廣泛,可以是單項式、多項式,也可以代表二次根式,所以整式的運(yùn)算法則和乘法公式適用于二次根式的運(yùn)算.

  設(shè)計意圖:讓學(xué)生加深數(shù)式通性的理解.

 。ㄎ澹┎贾米鳂I(yè)

  課本第15頁第4題.

  五、目標(biāo)檢測設(shè)計

  1.計算:的值是.

  2.計算:=;=.

  3.計算:=.

  4.計算:=.

  5.計算:=.

  設(shè)計意圖:通過練習(xí)熟悉二次根式的運(yùn)算的法則與算理.

二次根式教案4

  一、教學(xué)目標(biāo)

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過程

  (一)復(fù)習(xí)提問

  1.什么叫平方根、算術(shù)平方根?

  2.說出下列各式的`意義,并計算:

  通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.

  觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時,a+10又如當(dāng)0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負(fù)數(shù),式子 有意義.

  例3 當(dāng)字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當(dāng)a、b為任意實數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當(dāng)x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b20得b20,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負(fù)的實數(shù)a的算術(shù)平方根的表達(dá)式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習(xí)和作業(yè)

  練習(xí):

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時,又如當(dāng)x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習(xí)題11.1;A組1;B組1.

  六、板書設(shè)計

二次根式教案5

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R教學(xué)點

  1、使學(xué)生了解最簡二次根式的概念和同類二次根式的概念、

  2、能判斷二次根式中的同類二次根式、

  3、會用同類二次根式進(jìn)行二次根式的加減、

 。ǘ┠芰τ(xùn)練點

  通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生的思維能力并提高學(xué)生的運(yùn)算能力、

  (三)德育滲透點

  從簡單的同類二次根式的合并,層層深入,從解題的過程中,讓學(xué)生體會轉(zhuǎn)化的思維,滲透辯證唯物主義思想、

 。ㄋ模┟烙凉B透點

  通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美、

  二、學(xué)法引導(dǎo)

  1、教師教法引導(dǎo)法、比較法、剖析法,在比較和剖析中,不斷糾正錯誤,從而樹立牢固的計算方法、

  2、學(xué)生學(xué)法通過不斷的練習(xí),從中體會、比較、二次根式加減法中,正確的方法使用,并注重小結(jié)出二次根式加減法的法則、

  三、重點·難點·疑點及解決辦法

  1、教學(xué)重點二次根式的加減法運(yùn)算、

  2、教學(xué)難點二次根式的化簡、

  3、疑點及解決辦法二次根式的加減法的關(guān)鍵在于二次根式的化簡,在適當(dāng)復(fù)次根的化簡后進(jìn)行一步引入幾個整式加減法的,以引起學(xué)生的求知欲與興趣,從而最后引入同類二次根式的加減法,可進(jìn)行階梯式教學(xué),由淺到深、由簡單到復(fù)雜的'教學(xué)方法,以利于學(xué)生的理解、掌握和運(yùn)用,通過具體例題的計算,可由教師引導(dǎo),由學(xué)生總結(jié)出計算的步驟和注意的問題,還可以通過反例,讓學(xué)生去偽存真,這種比較法的教學(xué)可使學(xué)生對概念的理解、法則的運(yùn)用更加準(zhǔn)確和熟練,并能提高學(xué)生的學(xué)習(xí)興趣,以達(dá)到更好的學(xué)習(xí)效果、

  四、課時安排

  2課時

  五、教具學(xué)具準(zhǔn)備

  投影片

  六、師生互動活動設(shè)計

  1、復(fù)習(xí)最簡二根式整式及的加減運(yùn)算,引入二次根式的加減運(yùn)算,盡量讓學(xué)生回答問題、

  2、教師通過例題的示范讓學(xué)生了解什么是二次根式的加減法,并引入同類的二次根式的定義、

  3、再通過較復(fù)雜的二次根式的加減法計算,引導(dǎo)學(xué)生小結(jié)歸納出二次根式的加減法的法則、

  4、通過學(xué)生的反復(fù)訓(xùn)練,發(fā)現(xiàn)問題及時糾正,并引導(dǎo)學(xué)生從解題過程中體會理解二次根式加減法的實質(zhì)及解決的方法、

  七、教學(xué)步驟

 。ā┟鞔_目標(biāo)

  學(xué)次根式化簡的目的是為了能將一些最終能化為同類二次根式項相合并,從而達(dá)到化繁為簡的目的,本節(jié)課就是研究二次根式的加減法、

 。ǘ┱w感知

  同類二次根式的概念應(yīng)分二層含義去理解(1)化簡后(2)被開方數(shù)還相同、通過正確理解二次根式加減法的法則來準(zhǔn)確地實施二次根式加減法的運(yùn)算,應(yīng)特別注意合并同類二次根式時僅將它們的系數(shù)相加減,根式一定要保持不變,并可對比整式的加減法則以增加對合并同類二次根式的理解,增強(qiáng)綜合運(yùn)算的能力、

  第一課時

 。ā┙虒W(xué)過程

 。◤(fù)習(xí)引入)

  什么樣的二次根式叫做最簡二次根式?(由學(xué)生回答)

  與的形式與實質(zhì)是什么?

  可以化簡為、

  繼續(xù)提問:可以化簡嗎?

  這就是本節(jié)課研究的內(nèi)容——二次根式的加減法、

 。ㄖv解新課)

  1、復(fù)習(xí)整式的加減運(yùn)算

  計算:

 。1)____________________;

 。2)____________________;

  (3)____________________。

  小結(jié):整式的加減法,實質(zhì)上就是去括號和合并同類項的運(yùn)算、

  2、例題

 。1)計算:____________________

  解:____________________

 。2)計算:____________________

  解:____________________

  小結(jié):

 。1)如果幾個二次根式的被開方數(shù)相同,那么可以直接根據(jù)分配律進(jìn)行加減運(yùn)算、

 。2)如果所給的二次根式不是最簡二次根式,應(yīng)該先化簡,再進(jìn)行加減運(yùn)算、

  定義:幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式就叫做同類二次根式、

  3、例題

  例1 下列各式中,哪些是同類二次根式?

  解:略。

  例2 計算:____________________

  解:____________________

  例3 計算:____________________

  解:____________________

  二次根式加減法的法則:

  二次根式相加減,先把各個二次根式化成最簡二次根式,再把同類二次根式進(jìn)行合并,合并方法為系數(shù)相加減,根式不變、

 。ǹ蓪Ρ日降募訙p法則)

 。ǘ╇S堂練習(xí)

  計算:

  (1)____________________;

 。2)____________________

 。3)____________________。

 。ㄈ┛偨Y(jié)、擴(kuò)展:同類二次根式的定義;二次根式的加減法與整式的加減法進(jìn)行比較,強(qiáng)調(diào)注意的問題。

 。ㄋ模┎贾米鳂I(yè):____________________。

 。ㄎ澹┌鍟O(shè)計:____________________。

二次根式教案6

  1.教學(xué)目標(biāo)

  (1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會進(jìn)行簡單的二次根式的乘法運(yùn)算;

  (2)會用公式化簡二次根式.

  2.目標(biāo)解析

  (1)學(xué)生能通過計算發(fā)現(xiàn)規(guī)律并對其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

  (2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式.

  教學(xué)問題診斷分析

  本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號意識的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.

  在教學(xué)時,通過實例運(yùn)算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.

  本節(jié)課的教學(xué)難點為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡.

  教學(xué)過程設(shè)計

  1.復(fù)習(xí)引入,探究新知

  我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.

  問題1 什么叫二次根式?二次根式有哪些性質(zhì)?

  師生活動 學(xué)生回答。

  【設(shè)計意圖】乘法運(yùn)算和二次根式的化簡需要用到二次根式的性質(zhì).

  問題2 教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?

  師生活動 學(xué)生計算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容.

  【設(shè)計意圖】學(xué)生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語言和文字分別描述法則,以培養(yǎng)學(xué)生的符號意識.

  2.觀察比較,理解法則

  問題3 簡單的根式運(yùn)算.

  師生活動 學(xué)生動手操作,教師檢驗.

  問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?

  師生活動 學(xué)生回答,給出正確答案后,教師給出積的'算術(shù)平方根的性質(zhì).

  【設(shè)計意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡單的二次根式的乘法運(yùn)算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力.

  3.例題示范,學(xué)會應(yīng)用

  例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

  師生活動 提問:你是怎么理解例(1)的?

  如果學(xué)生回答不完善,再追問:這個問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡的效果?

  師生合作回答上述問題.對于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外.

  再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

  【設(shè)計意圖】通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡.

  例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

  師生活動 學(xué)生計算,教師檢驗.

  (1)在被開方數(shù)相乘的時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

  (2)二次根式的乘法運(yùn)算類似于整式的乘法運(yùn)算,交換律、結(jié)合律都是適用的.對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進(jìn)行運(yùn)算;

  (3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

  【設(shè)計意圖】引導(dǎo)學(xué)生及時總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡化運(yùn)算.讓學(xué)生認(rèn)識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.

  教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進(jìn)行判斷,在移出根號時正確處理符號問題.

  4.鞏固概念,學(xué)以致用

  練習(xí):教科書第7頁練習(xí)第1題. 第10頁習(xí)題16.2第1題.

  【設(shè)計意圖】鞏固性練習(xí),同時檢驗乘法法則的掌握情況.

  5.歸納小結(jié),反思提高

  師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:

  (1)你能說明二次根式的乘法法則是如何得出的嗎?

  (2)你能說明乘法法則逆用的意義嗎?

  (3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

  6.布置作業(yè):教科書第7頁第2、3題.習(xí)題16.2第1,6題.

  五、目標(biāo)檢測設(shè)計

  1.下列各式中,一定能成立的是( )

  A.二次根式的乘除 B.二次根式的乘除

  C.二次根式的乘除 D.二次根式的乘除

  【設(shè)計意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).

  2.化簡二次根式的乘除 ______________________________。

  【設(shè)計意圖】二次根式是特殊的實數(shù),實數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.

  3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是(  )

  A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

  【設(shè)計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式.

二次根式教案7

  教學(xué)設(shè)計

  1、知識技能:

  (1)會進(jìn)行簡單的二次根式的除法運(yùn)算。

  (2)使學(xué)生能利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算。

  2、數(shù)學(xué)思考:在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上進(jìn)行總結(jié)對比,得出除法的運(yùn)算法則。

  3、 解決問題:引導(dǎo)學(xué)生從特殊到一般總結(jié)歸納的方法以及類比的.方法,解決數(shù)學(xué)問題。

  4、情感態(tài)度:通過本節(jié)課的學(xué)習(xí)使學(xué)生認(rèn)識到事物之間是相互聯(lián)系的,相互作用的

  同步練習(xí)含答案解析

  【考點】最簡二次根式。

  【分析】判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查定義中的兩個條件(①被開方數(shù)不含分母;②被開方數(shù)不含能開得盡方的因數(shù)或因式)是否同時滿足,同時滿足的就是最簡二次根式,否則就不是。

  【解答】解:A、被開方數(shù)里含有能開得盡方的因數(shù)8,故本選項錯誤;

  B、符合最簡二次根式的條件;故本選項正確;

  B、,被開方數(shù)里含有能開得盡方的因式x2;故本選項錯誤;

  C、被開方數(shù)里含有分母;故本選項錯誤。

  D、被開方數(shù)里含有能開得盡方的因式a2;故本選項錯誤;

  故選;B。

  【點評】本題主要考查了最簡二次根式的定義,最簡二次根式必須滿足兩個條件:

  (1)被開方數(shù)不含分母;

  (2)被開方數(shù)不含能開得盡方的因數(shù)或因式。

  課時練習(xí)含答案

  解答:選項A是二次根式乘法的運(yùn)算,選項C不符合二次根式的運(yùn)算條件,選項D中被開方數(shù)不能為負(fù),故A、C、D都是錯誤的,唯有B符合二次根式除法運(yùn)算法則,故選B。

  分析:正確運(yùn)用二次根式除法運(yùn)算法則進(jìn)行計算,并能辨析運(yùn)算的正誤,是本節(jié)的教學(xué)難點,學(xué)生可以通過比較分析或正確計算加以判斷。

二次根式教案8

  活動1、提出問題

  一個運(yùn)動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運(yùn)動場的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

  問題:10+20是什么運(yùn)算?

  活動2、探究活動

  下列3個小題怎樣計算?

  問題:1)-還能繼續(xù)往下合并嗎?

  2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

  二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進(jìn)行合并。

  活動3

  練習(xí)1指出下列每組的.二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

  創(chuàng)設(shè)問題情景,引起學(xué)生思考。

  學(xué)生回答:這個運(yùn)動場要準(zhǔn)備(10+20)平方米的草皮。

  教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。

  我們可以利用已學(xué)知識或已有經(jīng)驗來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

  教師引導(dǎo)驗證:

  ①設(shè)=,類比合并同類項或面積法;

 、趯W(xué)生思考,得出先化簡,再合并的解題思路

  ③先化簡,再合并

  學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

  教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。

  提醒學(xué)生注意先化簡成最簡二次根式后再判斷。

二次根式教案9

  本節(jié)的重點有兩個:

 、、同類的概念

 、病⒍胃郊訙p運(yùn)算的方法

  本節(jié)的主要內(nèi)容是講解二次根式的加減法,而二次根式的加減法的關(guān)鍵是把二次根式化為最簡二次根式,再把同類二次根式合并、二次根式的加減法運(yùn)算實質(zhì)是合并同類二次根式,前提是要充分了解同類二次根式的概念,因此同類二次根式的概念是本節(jié)的一個重點。

  本節(jié)的難點二次根式的加減法運(yùn)算

  二次根式的加減法首先是化簡,在化簡之后,就是類似整式加減的運(yùn)算了、整式加減無非是去括號與合并同類項,二次根式的加減在化簡之后也是如此,同類二次根式類似同類項、但是學(xué)生初次接觸二次根式的加減法,在運(yùn)算過程中容易出現(xiàn)各種各樣的錯誤,因此熟練掌握二次根式的加減法運(yùn)算是本節(jié)的難點、

  本節(jié)的主要內(nèi)容是講解二次根式的加減法,而二次根式的加減法的關(guān)鍵是把二次根式化為最簡二次根式,再把同類二次根式合并、

  (1)在知識引入的講解中,有兩種不同的處理方法:一是按照教材中的方法,先給出幾個二次根式,把他們都化成最簡二次根式,在進(jìn)行比較或者加減運(yùn)算,從而引出二次根式的加減法和同類二次根式;二是先復(fù)習(xí)同類項的概念或進(jìn)行一兩道簡單的正式加減的題目,通過類比引出同類二次根式和二次根式的加減法、兩種處理方法各有優(yōu)劣,教師在教學(xué)過程中可根據(jù)學(xué)生的實際情況進(jìn)行選擇,當(dāng)然也可以把這兩種方法綜合應(yīng)用,但有些過繁、

 。2)在教材例1的教學(xué)中,教師可以根據(jù)學(xué)生情況進(jìn)行細(xì)分處理,例如分成幾個小問題:

 、侔驯婚_方數(shù)都是整數(shù)的放在一個小題中;

 、诎驯婚_方數(shù)都是分?jǐn)?shù)的放在一個小題中;

  ③把被開方數(shù)帶有簡單字母的放在一個小題中;

 、馨炎帜复螖(shù)略高于2的放在一個小題中。

  ……使問題的解決有一個由淺入深的漸進(jìn)過程,便于學(xué)生參與其中,也容易使學(xué)生獲得成就感、

  (3)在組織學(xué)生進(jìn)行二次根式的加減法教學(xué)中,同樣將例題細(xì)分成幾個層次進(jìn)行教學(xué),例如:

 、俨恍枰喣苤苯舆M(jìn)行相加減的';

 、谛枰喌婚_方數(shù)都是簡單整數(shù)的;

 、郾婚_方數(shù)都是有理數(shù)但既有整數(shù)又有分?jǐn)?shù)的;

 、鼙婚_方數(shù)含有字母的,等等。

 。4)在二次根式加減法的組織教學(xué)中,雖然教材已經(jīng)不要求二次根式加減法的法則,但可以組織學(xué)生自己總結(jié)法則,既有利于學(xué)生的參與,又能提高學(xué)生的觀察、分析和歸納能力、

  (5)在二次根式加減法的整個教學(xué)環(huán)節(jié)中,教師都要及時糾正學(xué)生的錯誤認(rèn)識,比如:

  ①不是最簡二次根式就不是同類二次根式;

 、谠摶喌臎]有化簡,或化簡的不正確;

 、墼摵喜⒌臎]有合并,不該合并的給合并了,或者合并錯了,等等類似情況。

  教師在教學(xué)中可以出一些容易出錯的題目讓學(xué)生進(jìn)行辨別,以利于知識的鞏固。

二次根式教案10

  一、復(fù)習(xí)引入

  學(xué)生活動:請同學(xué)們完成下列各題:

  1.計算

 。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改寫成二次根式呢?以上的運(yùn)算規(guī)律是否仍成立呢?仍成立.

  整式運(yùn)算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運(yùn)算規(guī)律也適用于二次根式.

  例1.計算:

 。1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運(yùn)算規(guī)律,所以直接可用整式的運(yùn)算規(guī)律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

 。1)(+6)(3-)(2)(+)(-)

  分析:剛才已經(jīng)分析,二次根式的`多項式乘以多項式運(yùn)算在乘法公式運(yùn)算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、鞏固練習(xí)

  課本P20練習(xí)1、2.

  四、應(yīng)用拓展

  例3.已知=2-,其中a、b是實數(shù),且a+b≠0,

  化簡+,并求值.

  分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可?

二次根式教案11

  教學(xué)目的:

  1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;

  2、會求二次根式的代數(shù)的值;

  3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

  教學(xué)重點:在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡二次根式

  教學(xué)難點:正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

  教學(xué)過程:

  一、二次根式的混合運(yùn)算

  例1 計算:

  分析:(1)題是二次根式的加減運(yùn)算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

  (2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計算,先算括號內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計算。

  練習(xí)1:P206 / 8--① P207 / 1①②

  例2 計算

  問:計算思路是什么?

  答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進(jìn)行計算。

  二、求代數(shù)式的值。 注意兩點:

  (1)如果已知條件為含二次根式的式子,先把它化簡;

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

  例3 已知,求的值。

  分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫啽。

  例4 已知,求的值。

  觀察代數(shù)式的.特點,請說出求這個代數(shù)式的值的思路。

  答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進(jìn)行]通分,把這個代數(shù)式化簡后,再求值。

  三、小結(jié)

  1、對于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號,先進(jìn)行括號內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

  3、在進(jìn)行二次根式的混合運(yùn)算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

二次根式教案12

  【1】二次根式的加減教案

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運(yùn)算,教材從一個實際問題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實際問題的需要。通過探索二次根式加減運(yùn)算,并用其解決一些實際問題,來提高我們用數(shù)學(xué)解決實際問題的意識和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

  學(xué)生分析:

  本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價教學(xué)策略,給予個別關(guān)照、心理暗示以及適當(dāng)?shù)木窦睿朔员靶睦恚屗麄冎鸩綐淞⒆宰鹦呐c自信心,從而完成自己的學(xué)習(xí)任務(wù)。

  設(shè)計理念:

  新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的'基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進(jìn)行評價。從而營造一個接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

  教學(xué)目標(biāo)知識與技能目標(biāo):

  會化簡二次根式,了解同類二次根式的概念,會進(jìn)行簡單的二次根式的加減法;通過加減運(yùn)算解決生活的實際問題。

  過程與方法目標(biāo):

  通過類比整式加減法運(yùn)算體驗二次根式加減法運(yùn)算的過程;學(xué)生經(jīng)歷由實際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

  情感態(tài)度與價值觀:

  通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗到成功的樂趣.

  重點、難點:重點:

  合并被開放數(shù)相同的同類二次根式,會進(jìn)行簡單的二次根式的加減法。

  難點:

  二次根式加減法的實際應(yīng)用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會進(jìn)行二次根式的加減法。

  教學(xué)方法:.

  1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵學(xué)生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實際問題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項合并同類二次根式。

  3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個別問題進(jìn)行點撥指導(dǎo),實現(xiàn)全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學(xué)目標(biāo):

  1.知識目標(biāo):二次根式的加減法運(yùn)算

  2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過二次根式的加減法運(yùn)算解決實際問題。

  3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

  重難點分析:

  重點:能熟練進(jìn)行二次根式的加減運(yùn)算。

  難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應(yīng)用。

  教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識,運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

  運(yùn)用教具:小黑板等。

  教學(xué)過程:

問題與情景

師生活動

設(shè)計目的

活動一:

情景引入,導(dǎo)學(xué)展示

1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識的回顧,老師可以找同學(xué)直接回答。對于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。

問:什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。

加強(qiáng)新舊知識的聯(lián)系。通過觀察,初步認(rèn)識同類二次根式。

引出二次根式加減法則。

3. A、B層同學(xué)自主學(xué)習(xí)15頁例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習(xí)。

例1.計算:

(1) ;

(2) - ;

例2. 計算:

1)

2)

例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動二:分層練習(xí),合作互助

1.下列計算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計算:

(1) ;

(2)

(3)

(4)

3.(見課本16頁)

補(bǔ)充:

活動三:分層檢測,反饋小結(jié)

教材17頁習(xí)題:

A層、 B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學(xué)到了什么知識?你有什么收獲?

作業(yè):課堂練習(xí)冊第5、6頁。

自學(xué)的同時抽查部分同學(xué)在黑板上板書計算過程。抽2名C層同學(xué)在黑板上完成例1板書過程,學(xué)生在計算時若出現(xiàn)錯誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書過程,并做適當(dāng)?shù)姆治鲋v解。

此題是聯(lián)系實際的題目,需要學(xué)生先列式,再計算。并將結(jié)果精確到0.1 m, 學(xué)生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的方案是否得當(dāng);2)考慮的問題是否全面。3)計算是否準(zhǔn)確。

A層同學(xué)完成16頁練習(xí)1、2、3;B層同學(xué)完成練習(xí)1、2,可選做第3題;C層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習(xí)1;抽4名B層或C層同學(xué)在黑板上板書練習(xí)第2題;抽1名A層或B層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。

點撥:1)對 的化簡是否正確;2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時,是否能正確處理;

3)運(yùn)算法則的運(yùn)用是否正確

先測試,再小組內(nèi)互批,查找問題。學(xué)生反思本節(jié)課學(xué)到的'知識,談自己的感受。

小結(jié)時教師要關(guān)注:

1)學(xué)生是否抓住本課的重點;

2)對于常見錯誤的認(rèn)識。

把學(xué)習(xí)目標(biāo)由高到低分為A、B、C三個層次,教學(xué)中做到分層要求。

學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過程,可以提高學(xué)生能力,同時有利于激發(fā)學(xué)生的探索知識的欲望。

二次根式的加減運(yùn)算融入實際問題中去,提高了學(xué)生的學(xué)習(xí)興趣和對數(shù)學(xué)知識的應(yīng)用意識和能力。

小組成員互相檢查學(xué)生對于新的知識掌握的情況,鞏固學(xué)生剛掌握的知識能力。達(dá)到共同把關(guān)、合作互助的目的。

培養(yǎng)學(xué)生的計算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

對課堂的問題及時反饋,使學(xué)生熟練掌握新知識。

每個學(xué)生對于知識的理解程度不同,學(xué)生回答時教師要多鼓勵學(xué)生。

二次根式教案13

  一、教學(xué)內(nèi)容

  1、教學(xué)內(nèi)容分析:二次根式是在數(shù)的開方的基礎(chǔ)上展開的,是算術(shù)平方根的抽象與擴(kuò)展,同時又為勾股定理和解一元二次方程打下基礎(chǔ).

  2、學(xué)生情況分析:本節(jié)課是二次根式的第一課時,是在學(xué)生學(xué)方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).對此班級中已初步形成合作交流、敢于探索與實踐的良好學(xué)風(fēng),學(xué)生間互相提問的互動氣氛較濃.

  二、教學(xué)設(shè)計理念

  根據(jù)基礎(chǔ)教育課程改革的具體目標(biāo),結(jié)合我校初二學(xué)生的實際情況,改變課程過于注重知識傳授的傾向,強(qiáng)調(diào)形成積極主動的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和體驗,實施“三學(xué)六步”課堂改革教學(xué)模式.

  三、教學(xué)目標(biāo)

  1、知識與技能:

 。1)了解二次根式的概念,理解二次根式有意義的條件,并會求二次根式中所含字母的取值范圍;

 。2)理解二次根式的非負(fù)性.

  2、過程與方法:通過對學(xué)、群學(xué)等方式培養(yǎng)學(xué)生分析、概括等能力.

  情感態(tài)度與價值觀:培養(yǎng)學(xué)生認(rèn)真參與、積極交流的主體意識和樂于探索、積極鉆研的科學(xué)精神、合作精神,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  四、教學(xué)重點、難點

  1、教學(xué)重點:了解二次根式的概念,二次根式有意義的條件,并會求二次根式中所含字母的取值范圍

  2、教學(xué)難點:理解二次根式的雙重非負(fù)性

  五、教學(xué)方法、手段

  1、教學(xué)方法:探究法、討論法、發(fā)現(xiàn)法

  2、教學(xué)手段:課件(ppt)

  六、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  問題1 你能用帶有根號的的式子填空嗎?

  (1)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系,如果用含有h 的式子表示 t ,則t= _____.

 。2)下球體過球心的橫截面面積為S,則橫截面圓形的半徑r為 .

 。3)面積為3 的正方形的邊長為_____,面積為S 的正方形的邊長為_____.

  【師生互動】:學(xué)生獨立思考,用算術(shù)平方根表示結(jié)果,教師適當(dāng)引導(dǎo)和評價.

  【設(shè)計意圖】:讓學(xué)生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

  探究新知,講授新課

  1.抽象概括,形成概念

  問題2 上面所得的代數(shù)式:,它們的共同特點是什么?

  【師生互動】:學(xué)生獨立思考并積極發(fā)言,教師歸納總結(jié).

  【設(shè)計意圖】:通過歸納總結(jié)引出二次根式的概念.

  問題3 根據(jù)以前所學(xué)知識,理解二次根式的定義,并且要注意什么.

  【師生互動】:學(xué)生小組討論并且小組長做好記錄,老師歸納總結(jié).

  【設(shè)計意圖】:加深對二次根式的理解.

  2.辨析概念,應(yīng)用鞏固

  問題4 (辯一辯) 判斷給出式子是不是二次根式:①;

 、;③;④;⑤;⑥

  【師生互動】:學(xué)生獨立思考并積極發(fā)言,并對于他們的答案做出正確地評價,給予必要的鼓勵.

  【設(shè)計意圖】:該題是利用搶答來調(diào)動課堂氣氛,理解二次根式的定義.

  問題5 根據(jù)要求編寫二次根式:

  (1)請寫出一個你喜歡的二次根式;

  請寫出一個被開方數(shù)含x的二次根式.;

  請你寫出一個被開方數(shù)含x,且當(dāng)x為任何實數(shù)的二次根式.

  【師生互動】:學(xué)生獨立思考并積極發(fā)言,其他同學(xué)來檢驗是否編寫正確.

  【設(shè)計意圖】:設(shè)計開放性題開拓學(xué)生思維,進(jìn)一步加深對二次根式的`理解.

  靈活運(yùn)用,鞏固提高

  問題6 當(dāng)x是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義:

  【師生互動】:

 。1)學(xué)生口答,老師板書規(guī)范解題格式,(2)(3)學(xué)生演板.學(xué)生完成之后小組討論結(jié)果的正確性,同時對演板的同學(xué)做出評價,老師再適時補(bǔ)充,(2)(3)評價增加一道變式,讓學(xué)生能靈活運(yùn)用知識.最后再歸納這類式子有意義要注意:

  (1)二次根式的被開方數(shù)為非負(fù)數(shù);

  (2)分母中含有字母時,要保證分母不為0.

  【設(shè)計意圖】:本題強(qiáng)化學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解,同時考查學(xué)生的靈活運(yùn)用的能力,訓(xùn)練學(xué)生的思維.

  發(fā)散思維,拓展延伸

  問題7 已知實數(shù)x,y滿足,求:

 。1)x的取值范圍;

 。2)以x,y的值為兩邊長的等腰三角形的周長.

  【師生互動】:學(xué)生先獨立思考,再小組合作,將答案寫在白板上,并請小組兩位成員上臺展示,其他同學(xué)提出質(zhì)疑,補(bǔ)充,老師適當(dāng)引導(dǎo)點評.

  【設(shè)計意圖】:本題第一問進(jìn)一步加深學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解;第二問滲透分類思想,通過小組合作,上臺展示體現(xiàn)學(xué)生為主體,發(fā)揮學(xué)生的能動性.

  問題8 (走進(jìn)中考)已知,則 p(x,y)是第 象限.

  【師生互動】:學(xué)生先獨立思考講解思路,老師適當(dāng)點評.

  【設(shè)計意圖】:本題主要考察

  課堂小結(jié),盤點收獲

  一路下來,我們結(jié)識了很多新知識,你能談?wù)勛约旱氖斋@嗎?說一說,讓大家一起來分享.

  【師生互動】:學(xué)生舉手發(fā)言,老師點評并鼓勵.

  【設(shè)計意圖】:學(xué)生總結(jié),互相取長補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點,幫助學(xué)生把握知識要點,理清知識脈絡(luò),體會數(shù)學(xué)中的分類思想.

  作業(yè)設(shè)計,鞏固提高

  必做題:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(寫序號)

  代數(shù)式有意義,則字母x的取值范圍是 .

  3.代數(shù)式的值為0,則a= .

  選做題:1.已知,則的值為 .

  2.若式子 有意義,則P(a,b)在第 象限.

  小組合作題:

  1.已知m,n滿足 ,求:(1)m,n的值.

 。2)將m,n的值 代入并化簡:

  (3)請選一個你喜歡的x的值代入求值.

  【設(shè)計意圖】:氣氛通過分層作業(yè),教師能及時了解學(xué)生對本節(jié)知識的掌握情況.必做題和選做題如果上課有時間打算用砸金蛋的形式調(diào)動課堂.

 。┌鍟O(shè)計

  16.1.1 二次根式 定義:形如 的式子叫做 二次根式 注:(雙重非負(fù)性) (老師板書) (學(xué)生演板)

二次根式教案14

  教學(xué)目的

  1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

  2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學(xué)重點

  最簡二次根式的定義。

  教學(xué)難點

  一個二次根式化成最簡二次根式的方法。

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習(xí):

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的.性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習(xí)

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  四、小結(jié)

  本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。

  五、布置作業(yè)

  下列各式化成最簡二次根式:

二次根式教案15

  第十六章 二次根式

  代數(shù)式用運(yùn)算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

  5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的'最小值為5.)

  6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

  7.解:(1) . (2)寬:3 ;長:5 .

  8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

  9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

  10.解析:在利用=|a|=化簡二次根式時,當(dāng)根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

  解:乙的解答是錯誤的.因為當(dāng)a=時,=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

  本節(jié)課通過“觀察——歸納——運(yùn)用”的模式,讓學(xué)生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.

  在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學(xué)生發(fā)揮主體作用不夠.

  在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.

  練習(xí)(教材第4頁)

  1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

  2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

  習(xí)題16.1(教材第5頁)

  1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時,有意義.

  2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

  3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

  4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

  5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

  6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

  7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時,在實數(shù)范圍內(nèi)有意義.

  8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時,t= =,當(dāng)h=25時,t= =.故當(dāng)h=10和h=25時,小球落地所用的時間分別為 s和 s.

  9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

  10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時, r= =,當(dāng)V=10π時,r= =1,當(dāng)V=20π時,r= =.

  如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

  〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡.

  解:由數(shù)軸可得:a+b<0,a-b>0,

  ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

  [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

  已知a,b,c為三角形的三條邊,則+= .

  〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

  [解題策略] 此類化簡問題要特別注意符號問題.

  化簡:.

  〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

  解:當(dāng)x≥3時,=|x-3|=x-3;

  當(dāng)x<3時,=|x-3|=-(x-3)=3-x.

  [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進(jìn)行討論.

  5

  O

  M

【二次根式教案】相關(guān)文章:

二次根式教案11-10

二次根式教案優(yōu)秀06-26

二次根式的數(shù)學(xué)教案03-26

【熱門】二次根式教案三篇10-24

關(guān)于二次根式教案3篇10-20

有關(guān)二次根式教案三篇10-25

《二次根式》教學(xué)教案(精選10篇)08-16

二次根式教案合集五篇04-08

二次根式教案模板7篇10-30