二次根式教案
作為一名無私奉獻的老師,有必要進行細致的教案準備工作,借助教案可以讓教學工作更科學化。怎樣寫教案才更能起到其作用呢?以下是小編為大家收集的二次根式教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
二次根式教案1
一、教學目標
1.理解分母有理化與除法的關系.
2.掌握二次根式的分母有理化.
3.通過二次根式的分母有理化,培養(yǎng)學生的運算能力.
4.通過學習分母有理化與除法的關系,向學生滲透轉化的數(shù)學思想
二、教學設計
小結、歸納、提高
三、重點、難點解決辦法
1.教學重點:分母有理化.
2.教學難點:分母有理化的技巧.
四、課時安排
1課時
五、教具學具準備
投影儀、膠片、多媒體
六、師生互動活動設計
復習小結,歸納整理,應用提高,以學生活動為主
七、教學過程
【復習提問】
二次根式混合運算的步驟、運算順序、互為有理化因式.
例1 說出下列算式的運算步驟和順序:
。1) (先乘除,后加減).
。2) (有括號,先去括號;不宜先進行括號內的運算).
(3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質).
例如:等式子的化簡,如果分母是兩個二次根式的和,應該怎樣化簡?
引入新課題.
【引入新課】
化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結論是分子與分母要同乘以 的`有理化因式,而這個式子就是 ,從而可將式子化簡.
例2 把下列各式的分母有理化:
。1) ; (2) ; (3)
解:略.
注:通過例題的講解,使學生理解和掌握化簡的步驟、關鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.
二次根式教案2
教學目標
1.使學生進一步理解二次根式的意義及基本性質,并能熟練 地化簡含二次根式的式子;
2.熟練地進行二次根式的加、減、乘、除混合運算.
教學重點和難點
重點:含二次根式的式子的混合運算.
難點:綜合運用二次根式的 性質及運算法則化簡和計算含二次根式的式子.
教學過程設計
一、復習
1.請同學回憶二次根式有哪些基本性質?用式子表示出來,并說明各 式成立的條件.
指出:二次根式的這些基本性質都是在一定條件 下才成立的,主要應用于化簡二次根式.
2.二次根式 的乘法及除法的法則是什么?用式子表示出來.
指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,
計算結果要把分母有理化.
3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關系式:
4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:
二、例題
例1 x取什么值時,下列各式在實數(shù)范圍內有意義:
分析:
(1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;
(3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;
(4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.
x-2且x0.
解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一個二次根式的被開方數(shù)的'分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質把式子化簡,化簡中應注意利用題中的隱含條件3 -a0和1-a>0.
解 因為1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
這些性質化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.
問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?
分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.
注意:
所以在化簡過程中,
例6
分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結構特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、課堂練習
1.選擇題:
A.a2B.a2
C.a2D.a<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空題:
4.計算:
四、小結
1.本節(jié)課復習的五個基本問題是“二次根式”這一章的主要基礎知識,同學們要深刻理解并牢固掌握.
2.在一次根式的化簡、計算及求值的過程中,應注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.
3.運用二次根式的四個基本性質進行二次根式的運算時,一定要注意論述每一個性質中字母的取值范圍的條件.
4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質和法則以及有關多項式的因式分解,解答有關含二次根式的式子的化簡、計算及求值等問題.
五、作業(yè)
1.x是什么值時,下列各式在實數(shù)范圍內有意義?
2.把下列各式化成最簡二次根式:
二次根式教案3
一、內容和內容解析
1.內容
二次根式的加減乘除混合運算.
2.內容解析
二次根式的混合運算是本章所學內容的綜合運用,運算過程中用到乘法分配律,還需用多項式的乘法法則和整式的乘法公式,教學中要注意讓學生體會二次根式的運算與整式運算的聯(lián)系.
基于以上分析,可以確定本課的教學重點是運用乘法分配律、多項式乘法法則及乘法公式進行二次根式的加減乘除混合運算.
二、目標和目標解析
1.目標
。1)掌握二次根式混合運算的法則,合理使用運算律.
。2)靈活運用運算律、乘法公式等技巧,使計算簡便.
2.目標解析
達成目標(1)的標志是:學生能在有理數(shù)混合運算及整式的混合運算基礎上,類比得出二次根式混合運算的法則及算理.
目標(2)是通過類比整式乘法公式讓學生能熟練進行二次根式混合運算.
三、教學問題診斷分析
二次根式的混合運算,困難在于讓學生體會二次根式的運算與整式運算的聯(lián)系.在二次根式運算中,法則和乘法公式仍然適用.
本課的教學難點是:二次根式運算中,靈活運用多項式乘法法則及乘法公式.
四、教學過程設計
(一)提出問題
問題1:計算
。1);(2).
問題2:計算
。1);(2).
師生活動:學生獨立完成計算,小結算理.
追問1:問題1、2中的字母、可以代表哪些數(shù)與式.
師生活動:學生自由發(fā)言,引出、可代表二次根式.
設計意圖:類比整式運算引出二次根式混合運算的法則與算理.
(二)探索新知,解決問題
問題3:類比問題,完成計算:
(1);(2).
師生活動:學生獨立思考完成,請學生板演,教師適時引導,兩題均用乘法分配律.
設計意圖:讓學生體會到數(shù)的擴充過程中運算律的一致性.
問題4:在問題2中,若令,你能計算下列式子的.值嗎?
。1);(2).
師生活動:學生通過類比思考得出結論,教師引導學生得出二次根式運算中,多項式乘法法則和乘法公式仍然適用.
設計意圖:讓學生感受到數(shù)的擴充過程中數(shù)式通性.
(三)典型例題
例1計算:(1);(2).
例2計算:(1);
。2);
。3).
師生活動:學生獨立完成計算,教師適時給予評價.
設計意圖:加強學生運算技能的訓練,進一步讓學生認識二次根式和整式性質運算法則上的一致性.例2、例3在不能用乘法公式的情況下,可用多項式乘法法則.
。ㄋ模┱n堂小結
整式的運算法則和乘法公式中的字母意義非常廣泛,可以是單項式、多項式,也可以代表二次根式,所以整式的運算法則和乘法公式適用于二次根式的運算.
設計意圖:讓學生加深數(shù)式通性的理解.
。ㄎ澹┎贾米鳂I(yè)
課本第15頁第4題.
五、目標檢測設計
1.計算:的值是.
2.計算:=;=.
3.計算:=.
4.計算:=.
5.計算:=.
設計意圖:通過練習熟悉二次根式的運算的法則與算理.
二次根式教案4
一、教學目標
1.了解二次根式的意義;
2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3. 掌握二次根式的性質 和 ,并能靈活應用;
4.通過二次根式的計算培養(yǎng)學生的邏輯思維能力;
5. 通過二次根式性質 和 的介紹滲透對稱性、規(guī)律性的數(shù)學美.
二、教學重點和難點
重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.
難點:確定二次根式中字母的取值范圍.
三、教學方法
啟發(fā)式、講練結合.
四、教學過程
(一)復習提問
1.什么叫平方根、算術平方根?
2.說出下列各式的`意義,并計算:
通過練習使學生進一步理解平方根、算術平方根的概念.
觀察上面幾個式子的特點,引導學生總結它們的被平方數(shù)都大于或等于零,其中 ,
表示的是算術平方根.
(二)引入新課
我們已遇到的這樣的式子是我們這節(jié)課研究的內容,引出:
新課:二次根式
定義: 式子 叫做二次根式.
對于 請同學們討論論應注意的問題,引導學生總結:
(1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.
(2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的外在形態(tài).請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學生分析、回答.
例1 當a為實數(shù)時,下列各式中哪些是二次根式?
分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a-10時,a+10又如當0
例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?
解:略.
說明:這個問題實質上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.
例3 當字母取何值時,下列各式為二次根式:
(1) (2) (3) (4)
分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉化為解不等式.
解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當a、b為任意實數(shù)時, 是二次根式.
(2)-3x0,x0,即x0時, 是二次根式.
(3) ,且x0,x0,當x0時, 是二次根式.
(4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.
例4 下列各式是二次根式,求式子中的字母所滿足的條件:
(1) ; (2) ; (3) ; (4)
分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.
解:(1)由2a+30,得 .
(2)由 ,得3a-10,解得 .
(3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).
(4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.
(三)小結(引導學生做出本節(jié)課學習內容小結)
1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術平方根的表達式.
2.式子中,被開方數(shù)(式)必須大于等于零.
(四)練習和作業(yè)
練習:
1.判斷下列各式是否是二次根式
分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.
2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內有意義?
五、作業(yè)
教材P.172習題11.1;A組1;B組1.
六、板書設計
二次根式教案5
一、素質教育目標
。ㄒ唬┲R教學點
1、使學生了解最簡二次根式的概念和同類二次根式的概念、
2、能判斷二次根式中的同類二次根式、
3、會用同類二次根式進行二次根式的加減、
。ǘ┠芰τ柧汓c
通過本節(jié)的學習,培養(yǎng)學生的思維能力并提高學生的運算能力、
。ㄈ┑掠凉B透點
從簡單的同類二次根式的合并,層層深入,從解題的過程中,讓學生體會轉化的思維,滲透辯證唯物主義思想、
。ㄋ模┟烙凉B透點
通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美、
二、學法引導
1、教師教法引導法、比較法、剖析法,在比較和剖析中,不斷糾正錯誤,從而樹立牢固的計算方法、
2、學生學法通過不斷的練習,從中體會、比較、二次根式加減法中,正確的方法使用,并注重小結出二次根式加減法的法則、
三、重點·難點·疑點及解決辦法
1、教學重點二次根式的加減法運算、
2、教學難點二次根式的化簡、
3、疑點及解決辦法二次根式的加減法的關鍵在于二次根式的化簡,在適當復次根的化簡后進行一步引入幾個整式加減法的,以引起學生的求知欲與興趣,從而最后引入同類二次根式的加減法,可進行階梯式教學,由淺到深、由簡單到復雜的'教學方法,以利于學生的理解、掌握和運用,通過具體例題的計算,可由教師引導,由學生總結出計算的步驟和注意的問題,還可以通過反例,讓學生去偽存真,這種比較法的教學可使學生對概念的理解、法則的運用更加準確和熟練,并能提高學生的學習興趣,以達到更好的學習效果、
四、課時安排
2課時
五、教具學具準備
投影片
六、師生互動活動設計
1、復習最簡二根式整式及的加減運算,引入二次根式的加減運算,盡量讓學生回答問題、
2、教師通過例題的示范讓學生了解什么是二次根式的加減法,并引入同類的二次根式的定義、
3、再通過較復雜的二次根式的加減法計算,引導學生小結歸納出二次根式的加減法的法則、
4、通過學生的反復訓練,發(fā)現(xiàn)問題及時糾正,并引導學生從解題過程中體會理解二次根式加減法的實質及解決的方法、
七、教學步驟
。ā┟鞔_目標
學次根式化簡的目的是為了能將一些最終能化為同類二次根式項相合并,從而達到化繁為簡的目的,本節(jié)課就是研究二次根式的加減法、
。ǘ┱w感知
同類二次根式的概念應分二層含義去理解(1)化簡后(2)被開方數(shù)還相同、通過正確理解二次根式加減法的法則來準確地實施二次根式加減法的運算,應特別注意合并同類二次根式時僅將它們的系數(shù)相加減,根式一定要保持不變,并可對比整式的加減法則以增加對合并同類二次根式的理解,增強綜合運算的能力、
第一課時
。ā┙虒W過程
。◤土曇耄
什么樣的二次根式叫做最簡二次根式?(由學生回答)
與的形式與實質是什么?
可以化簡為、
繼續(xù)提問:可以化簡嗎?
這就是本節(jié)課研究的內容——二次根式的加減法、
。ㄖv解新課)
1、復習整式的加減運算
計算:
。1)____________________;
。2)____________________;
。3)____________________。
小結:整式的加減法,實質上就是去括號和合并同類項的運算、
2、例題
。1)計算:____________________
解:____________________
。2)計算:____________________
解:____________________
小結:
。1)如果幾個二次根式的被開方數(shù)相同,那么可以直接根據(jù)分配律進行加減運算、
。2)如果所給的二次根式不是最簡二次根式,應該先化簡,再進行加減運算、
定義:幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式就叫做同類二次根式、
3、例題
例1 下列各式中,哪些是同類二次根式?
解:略。
例2 計算:____________________
解:____________________
例3 計算:____________________
解:____________________
二次根式加減法的法則:
二次根式相加減,先把各個二次根式化成最簡二次根式,再把同類二次根式進行合并,合并方法為系數(shù)相加減,根式不變、
。ǹ蓪Ρ日降募訙p法則)
(二)隨堂練習
計算:
。1)____________________;
。2)____________________;
(3)____________________。
(三)總結、擴展:同類二次根式的定義;二次根式的加減法與整式的加減法進行比較,強調注意的問題。
。ㄋ模┎贾米鳂I(yè):____________________。
(五)板書設計:____________________。
二次根式教案6
1.教學目標
(1)經歷二次根式的乘法法則和積的算術平方根的性質的形成過程;會進行簡單的二次根式的乘法運算;
(2)會用公式化簡二次根式.
2.目標解析
(1)學生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內容;
(2)學生能利用二次根式的乘法法則和積的算術平方根的性質,化簡二次根式.
教學問題診斷分析
本節(jié)課的學習中,學生在得出乘法法則和積的算術平方根的性質后,對于何時該選用何公式簡化運算感到困難.運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關,由于該內容與以前學過的實數(shù)內容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學中,要多從聯(lián)系性上下力氣.,培養(yǎng)學生良好的運算習慣.
在教學時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分數(shù)或分式(包括小數(shù)),可以采用直接利用分式的性質,結合二次根式的性質進行化簡(例見教科書例6解法1),也可以先寫成算術平方根的商的形式,再利用分式的性質處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.
本節(jié)課的教學難點為:二次根式的性質及乘法法則的正確應用和二次根式的化簡.
教學過程設計
1.復習引入,探究新知
我們前面已經學習了二次根式的概念和性質,本節(jié)課開始我們要學習二次根式的乘除.本節(jié)課先學習二次根式的乘法.
問題1 什么叫二次根式?二次根式有哪些性質?
師生活動 學生回答。
【設計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質.
問題2 教材第6頁“探究”欄目,計算結果如何?有何規(guī)律?
師生活動 學生計算、思考并嘗試歸納,引導學生用自己的語言描述乘法法則的內容.
【設計意圖】學生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學生用數(shù)學語言和文字分別描述法則,以培養(yǎng)學生的符號意識.
2.觀察比較,理解法則
問題3 簡單的根式運算.
師生活動 學生動手操作,教師檢驗.
問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?
師生活動 學生回答,給出正確答案后,教師給出積的'算術平方根的性質.
【設計意圖】讓學生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術平方根的性質,性質是為運算服務的,積的算術平方根的性質將積的算術平方根分解成幾個因數(shù)或因式的算術平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學生的運算能力.
3.例題示范,學會應用
例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.
師生活動 提問:你是怎么理解例(1)的?
如果學生回答不完善,再追問:這個問題中,就直接將結果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡的效果?
師生合作回答上述問題.對于根式運算的最后結果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應依據(jù)二次根式的性質二次根式的乘除將其移出根號外.
再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?
【設計意圖】通過運算,培養(yǎng)學生的運算能力,明確二次根式化簡的方向.積的算術平方根的性質可以進行二次根式的化簡.
例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除
師生活動 學生計算,教師檢驗.
(1)在被開方數(shù)相乘的時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;
(2)二次根式的乘法運算類似于整式的乘法運算,交換律、結合律都是適用的.對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進行運算;
(3)例(3)的運算是選學內容.讓學有余力的學生學到“根號下為字母的二次根式”的運算.本題先利用積的算術平方根的性質,得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.
【設計意圖】引導學生及時總結,強調利用運算律進行運算,利用乘法公式簡化運算.讓學生認識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關于整式運算的公式和方法也適用.
教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應強調,看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題.
4.鞏固概念,學以致用
練習:教科書第7頁練習第1題. 第10頁習題16.2第1題.
【設計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況.
5.歸納小結,反思提高
師生共同回顧本節(jié)課所學內容,并請學生回答以下問題:
(1)你能說明二次根式的乘法法則是如何得出的嗎?
(2)你能說明乘法法則逆用的意義嗎?
(3)化簡二次根式的基本步驟是怎樣?一般對最后結果有何要求?
6.布置作業(yè):教科書第7頁第2、3題.習題16.2第1,6題.
五、目標檢測設計
1.下列各式中,一定能成立的是( )
A.二次根式的乘除 B.二次根式的乘除
C.二次根式的乘除 D.二次根式的乘除
【設計意圖】考查二次根式的概念和性質,這是進行二次根式的乘法運算的基礎.
2.化簡二次根式的乘除 ______________________________。
【設計意圖】二次根式是特殊的實數(shù),實數(shù)的相關運算法則也適用于二次根式.
3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結果是( )
A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除
【設計意圖】鞏固二次根式的性質,利用積的算術平方根的性質正確化簡二次根式.
二次根式教案7
教學設計
1、知識技能:
(1)會進行簡單的二次根式的除法運算。
(2)使學生能利用商的算術平方根的性質進行二次根式的化簡與運算。
2、數(shù)學思考:在學習了二次根式乘法的基礎上進行總結對比,得出除法的運算法則。
3、 解決問題:引導學生從特殊到一般總結歸納的方法以及類比的.方法,解決數(shù)學問題。
4、情感態(tài)度:通過本節(jié)課的學習使學生認識到事物之間是相互聯(lián)系的,相互作用的
同步練習含答案解析
【考點】最簡二次根式。
【分析】判定一個二次根式是不是最簡二次根式的方法,就是逐個檢查定義中的兩個條件(①被開方數(shù)不含分母;②被開方數(shù)不含能開得盡方的因數(shù)或因式)是否同時滿足,同時滿足的就是最簡二次根式,否則就不是。
【解答】解:A、被開方數(shù)里含有能開得盡方的因數(shù)8,故本選項錯誤;
B、符合最簡二次根式的條件;故本選項正確;
B、,被開方數(shù)里含有能開得盡方的因式x2;故本選項錯誤;
C、被開方數(shù)里含有分母;故本選項錯誤。
D、被開方數(shù)里含有能開得盡方的因式a2;故本選項錯誤;
故選;B。
【點評】本題主要考查了最簡二次根式的定義,最簡二次根式必須滿足兩個條件:
(1)被開方數(shù)不含分母;
(2)被開方數(shù)不含能開得盡方的因數(shù)或因式。
課時練習含答案
解答:選項A是二次根式乘法的運算,選項C不符合二次根式的運算條件,選項D中被開方數(shù)不能為負,故A、C、D都是錯誤的,唯有B符合二次根式除法運算法則,故選B。
分析:正確運用二次根式除法運算法則進行計算,并能辨析運算的正誤,是本節(jié)的教學難點,學生可以通過比較分析或正確計算加以判斷。
二次根式教案8
活動1、提出問題
一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的草皮嗎?
問題:10+20是什么運算?
活動2、探究活動
下列3個小題怎樣計算?
問題:1)-還能繼續(xù)往下合并嗎?
2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進行合并。
活動3
練習1指出下列每組的.二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設問題情景,引起學生思考。
學生回答:這個運動場要準備(10+20)平方米的草皮。
教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。
我們可以利用已學知識或已有經驗來分組討論、交流,看看+到底等于什么?小組展示討論結果。
教師引導驗證:
、僭O=,類比合并同類項或面積法;
、趯W生思考,得出先化簡,再合并的解題思路
、巯然,再合并
學生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。
教師巡視、指導,學生完成、交流,師生評價。
提醒學生注意先化簡成最簡二次根式后再判斷。
二次根式教案9
本節(jié)的重點有兩個:
⒈、同類的概念
、、二次根式加減運算的方法
本節(jié)的主要內容是講解二次根式的加減法,而二次根式的加減法的關鍵是把二次根式化為最簡二次根式,再把同類二次根式合并、二次根式的加減法運算實質是合并同類二次根式,前提是要充分了解同類二次根式的概念,因此同類二次根式的概念是本節(jié)的一個重點。
本節(jié)的難點二次根式的加減法運算
二次根式的加減法首先是化簡,在化簡之后,就是類似整式加減的運算了、整式加減無非是去括號與合并同類項,二次根式的加減在化簡之后也是如此,同類二次根式類似同類項、但是學生初次接觸二次根式的加減法,在運算過程中容易出現(xiàn)各種各樣的錯誤,因此熟練掌握二次根式的加減法運算是本節(jié)的難點、
本節(jié)的主要內容是講解二次根式的加減法,而二次根式的加減法的關鍵是把二次根式化為最簡二次根式,再把同類二次根式合并、
。1)在知識引入的講解中,有兩種不同的處理方法:一是按照教材中的方法,先給出幾個二次根式,把他們都化成最簡二次根式,在進行比較或者加減運算,從而引出二次根式的加減法和同類二次根式;二是先復習同類項的概念或進行一兩道簡單的正式加減的題目,通過類比引出同類二次根式和二次根式的加減法、兩種處理方法各有優(yōu)劣,教師在教學過程中可根據(jù)學生的實際情況進行選擇,當然也可以把這兩種方法綜合應用,但有些過繁、
。2)在教材例1的教學中,教師可以根據(jù)學生情況進行細分處理,例如分成幾個小問題:
、侔驯婚_方數(shù)都是整數(shù)的放在一個小題中;
、诎驯婚_方數(shù)都是分數(shù)的放在一個小題中;
、郯驯婚_方數(shù)帶有簡單字母的放在一個小題中;
、馨炎帜复螖(shù)略高于2的放在一個小題中。
……使問題的解決有一個由淺入深的漸進過程,便于學生參與其中,也容易使學生獲得成就感、
。3)在組織學生進行二次根式的加減法教學中,同樣將例題細分成幾個層次進行教學,例如:
①不需要化簡能直接進行相加減的';
、谛枰喌婚_方數(shù)都是簡單整數(shù)的;
、郾婚_方數(shù)都是有理數(shù)但既有整數(shù)又有分數(shù)的;
④被開方數(shù)含有字母的,等等。
。4)在二次根式加減法的組織教學中,雖然教材已經不要求二次根式加減法的法則,但可以組織學生自己總結法則,既有利于學生的參與,又能提高學生的觀察、分析和歸納能力、
。5)在二次根式加減法的整個教學環(huán)節(jié)中,教師都要及時糾正學生的錯誤認識,比如:
①不是最簡二次根式就不是同類二次根式;
、谠摶喌臎]有化簡,或化簡的不正確;
、墼摵喜⒌臎]有合并,不該合并的給合并了,或者合并錯了,等等類似情況。
教師在教學中可以出一些容易出錯的題目讓學生進行辨別,以利于知識的鞏固。
二次根式教案10
一、復習引入
學生活動:請同學們完成下列各題:
1.計算
。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探索新知
如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.
整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.
例1.計算:
。1)(+)×(2)(4-3)÷2分析:剛才已經分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.
解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算
(1)(+6)(3-)(2)(+)(-)
分析:剛才已經分析,二次根式的`多項式乘以多項式運算在乘法公式運算中仍然成立.
解:(1)(+6)(3-)
=3-()2+18-6=13-3(2)(+)(-)=()2-()2
=10-7=3
三、鞏固練習
課本P20練習1、2.
四、應用拓展
例3.已知=2-,其中a、b是實數(shù),且a+b≠0,
化簡+,并求值.
分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結果即可?
二次根式教案11
教學目的:
1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;
2、會求二次根式的代數(shù)的值;
3、進一步提高學生的綜合運算能力。
教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式
教學難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值
教學過程:
一、二次根式的混合運算
例1 計算:
分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。
(2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內的式子,最后進行除法運算。注意的計算。
練習1:P206 / 8--① P207 / 1①②
例2 計算
問:計算思路是什么?
答:先把第一人的括號內的式子通分,把第二個括號內的式子的分母有理化,再進行計算。
二、求代數(shù)式的值。 注意兩點:
(1)如果已知條件為含二次根式的式子,先把它化簡;
(2)如果代數(shù)式是含二次根式的式子,應先把代數(shù)式化簡,再求值。
例3 已知,求的值。
分析:多項式可轉化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫啽。
例4 已知,求的值。
觀察代數(shù)式的.特點,請說出求這個代數(shù)式的值的思路。
答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。
三、小結
1、對于二次根式的混合混合運算。應根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內的式子的運算,運算結果要化為最簡二次根式。
2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。
3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。
四、作業(yè)
P206 / 7 P206 / 8---②③
二次根式教案12
【1】二次根式的加減教案
教材分析:
本節(jié)內容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。
學生分析:
本節(jié)課的內容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎差、自學能力差,因此要提供賞識性評價教學策略,給予個別關照、心理暗示以及適當?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務。
設計理念:
新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的'基礎上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉變?yōu)閷W生的自主性、探究性、合作性學習活動的設計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設置開放的、面向實際的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。
教學目標知識與技能目標:
會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。
過程與方法目標:
通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。
情感態(tài)度與價值觀:
通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的過程中來,使他們體驗到成功的樂趣.
重點、難點:重點:
合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。
難點:
二次根式加減法的實際應用。
關鍵問題 :
了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。
教學方法:.
1. 引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結論,掌握規(guī)律。
2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。
3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。
【2】二次根式的加減教案
教學目標:
1.知識目標:二次根式的加減法運算
2.能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。
3.情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。
重難點分析:
重點:能熟練進行二次根式的加減運算。
難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應用。
教學關鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數(shù)學上有不同的發(fā)展。
運用教具:小黑板等。
教學過程:
問題與情景 | 師生活動 | 設計目的 |
活動一: 情景引入,導學展示 1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點? 2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板? | 這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關注:學生是否能熟練得到正確答案。 教師傾聽學生的交流,指導學生探究。 問:什么樣的二次根式能進行加減運算,運算到那一步為止。 由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。 | 加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。 引出二次根式加減法則。 |
3. A、B層同學自主學習15頁例1、例2、例3,C層同學至少完成例1、例2的學習。 例1.計算: (1) ; (2) - ; 例2. 計算: 1) 2) 例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)? 活動二:分層練習,合作互助 1.下列計算是否正確?為什么? (1) (2) ; (3) 。 2.計算: (1) ; (2) (3) (4) 3.(見課本16頁) 補充: 活動三:分層檢測,反饋小結 教材17頁習題: A層、 B層:2、3. C層1、2. 小結: 這節(jié)課你學到了什么知識?你有什么收獲? 作業(yè):課堂練習冊第5、6頁。 | 自學的同時抽查部分同學在黑板上板書計算過程。抽2名C層同學在黑板上完成例1板書過程,學生在計算時若出現(xiàn)錯誤,抽2名B層同學訂正。抽2名B層同學在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學訂正。抽1名A層同學在黑板上完成例3板書過程,并做適當?shù)姆治鲋v解。 此題是聯(lián)系實際的題目,需要學生先列式,再計算。并將結果精確到0.1 m, 學生考慮問題要全面,不能漏掉任何一段鋼材。 老師提示: 1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。 A層同學完成16頁練習1、2、3;B層同學完成練習1、2,可選做第3題;C層同學盡量完成練習1、2。多數(shù)同學完成后,讓學生在小組內互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名C層同學口答練習1;抽4名B層或C層同學在黑板上板書練習第2題;抽1名A層或B層同學在黑板上板書練習第3題后再分析講解。 點撥:1)對 的化簡是否正確;2)當根式中出現(xiàn)小數(shù)、分數(shù)、字母時,是否能正確處理; 3)運算法則的運用是否正確 先測試,再小組內互批,查找問題。學生反思本節(jié)課學到的'知識,談自己的感受。 小結時教師要關注: 1)學生是否抓住本課的重點; 2)對于常見錯誤的認識。 | 把學習目標由高到低分為A、B、C三個層次,教學中做到分層要求。 學生學習經歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。 將二次根式的加減運算融入實際問題中去,提高了學生的學習興趣和對數(shù)學知識的應用意識和能力。 小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關、合作互助的目的。 培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。 對課堂的問題及時反饋,使學生熟練掌握新知識。 每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。 |
二次根式教案13
一、教學內容
1、教學內容分析:二次根式是在數(shù)的開方的基礎上展開的,是算術平方根的抽象與擴展,同時又為勾股定理和解一元二次方程打下基礎.
2、學生情況分析:本節(jié)課是二次根式的第一課時,是在學生學方根、算術平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎上,來學習二次根式的概念. 它不僅是對前面所學知識的綜合應用,也為后面學習二次根式的性質和四則運算打基礎.對此班級中已初步形成合作交流、敢于探索與實踐的良好學風,學生間互相提問的互動氣氛較濃.
二、教學設計理念
根據(jù)基礎教育課程改革的具體目標,結合我校初二學生的實際情況,改變課程過于注重知識傳授的傾向,強調形成積極主動的學習態(tài)度,關注學生的學習興趣和體驗,實施“三學六步”課堂改革教學模式.
三、教學目標
1、知識與技能:
。1)了解二次根式的概念,理解二次根式有意義的條件,并會求二次根式中所含字母的取值范圍;
。2)理解二次根式的非負性.
2、過程與方法:通過對學、群學等方式培養(yǎng)學生分析、概括等能力.
情感態(tài)度與價值觀:培養(yǎng)學生認真參與、積極交流的主體意識和樂于探索、積極鉆研的科學精神、合作精神,激發(fā)學生學習數(shù)學的興趣.
四、教學重點、難點
1、教學重點:了解二次根式的概念,二次根式有意義的條件,并會求二次根式中所含字母的取值范圍
2、教學難點:理解二次根式的雙重非負性
五、教學方法、手段
1、教學方法:探究法、討論法、發(fā)現(xiàn)法
2、教學手段:課件(ppt)
六、教學過程
。ㄒ唬﹦(chuàng)設情境,導入新課
問題1 你能用帶有根號的的式子填空嗎?
(1)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:m)滿足關系,如果用含有h 的式子表示 t ,則t= _____.
。2)下球體過球心的橫截面面積為S,則橫截面圓形的半徑r為 .
。3)面積為3 的正方形的邊長為_____,面積為S 的正方形的邊長為_____.
【師生互動】:學生獨立思考,用算術平方根表示結果,教師適當引導和評價.
【設計意圖】:讓學生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.
探究新知,講授新課
1.抽象概括,形成概念
問題2 上面所得的代數(shù)式:,它們的共同特點是什么?
【師生互動】:學生獨立思考并積極發(fā)言,教師歸納總結.
【設計意圖】:通過歸納總結引出二次根式的概念.
問題3 根據(jù)以前所學知識,理解二次根式的定義,并且要注意什么.
【師生互動】:學生小組討論并且小組長做好記錄,老師歸納總結.
【設計意圖】:加深對二次根式的理解.
2.辨析概念,應用鞏固
問題4 (辯一辯) 判斷給出式子是不是二次根式:①;
、;③;④;⑤;⑥
【師生互動】:學生獨立思考并積極發(fā)言,并對于他們的答案做出正確地評價,給予必要的鼓勵.
【設計意圖】:該題是利用搶答來調動課堂氣氛,理解二次根式的定義.
問題5 根據(jù)要求編寫二次根式:
。1)請寫出一個你喜歡的二次根式;
請寫出一個被開方數(shù)含x的二次根式.;
請你寫出一個被開方數(shù)含x,且當x為任何實數(shù)的二次根式.
【師生互動】:學生獨立思考并積極發(fā)言,其他同學來檢驗是否編寫正確.
【設計意圖】:設計開放性題開拓學生思維,進一步加深對二次根式的`理解.
靈活運用,鞏固提高
問題6 當x是怎樣的實數(shù)時,下列各式在實數(shù)范圍內有意義:
【師生互動】:
。1)學生口答,老師板書規(guī)范解題格式,(2)(3)學生演板.學生完成之后小組討論結果的正確性,同時對演板的同學做出評價,老師再適時補充,(2)(3)評價增加一道變式,讓學生能靈活運用知識.最后再歸納這類式子有意義要注意:
。1)二次根式的被開方數(shù)為非負數(shù);
。2)分母中含有字母時,要保證分母不為0.
【設計意圖】:本題強化學生對二次根式被開方數(shù)為非負數(shù)的理解,同時考查學生的靈活運用的能力,訓練學生的思維.
發(fā)散思維,拓展延伸
問題7 已知實數(shù)x,y滿足,求:
。1)x的取值范圍;
。2)以x,y的值為兩邊長的等腰三角形的周長.
【師生互動】:學生先獨立思考,再小組合作,將答案寫在白板上,并請小組兩位成員上臺展示,其他同學提出質疑,補充,老師適當引導點評.
【設計意圖】:本題第一問進一步加深學生對二次根式被開方數(shù)為非負數(shù)的理解;第二問滲透分類思想,通過小組合作,上臺展示體現(xiàn)學生為主體,發(fā)揮學生的能動性.
問題8 (走進中考)已知,則 p(x,y)是第 象限.
【師生互動】:學生先獨立思考講解思路,老師適當點評.
【設計意圖】:本題主要考察
課堂小結,盤點收獲
一路下來,我們結識了很多新知識,你能談談自己的收獲嗎?說一說,讓大家一起來分享.
【師生互動】:學生舉手發(fā)言,老師點評并鼓勵.
【設計意圖】:學生總結,互相取長補短,再一次突出本節(jié)課的學習重點,幫助學生把握知識要點,理清知識脈絡,體會數(shù)學中的分類思想.
作業(yè)設計,鞏固提高
必做題:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(寫序號)
代數(shù)式有意義,則字母x的取值范圍是 .
3.代數(shù)式的值為0,則a= .
選做題:1.已知,則的值為 .
2.若式子 有意義,則P(a,b)在第 象限.
小組合作題:
1.已知m,n滿足 ,求:(1)m,n的值.
。2)將m,n的值 代入并化簡:
(3)請選一個你喜歡的x的值代入求值.
【設計意圖】:氣氛通過分層作業(yè),教師能及時了解學生對本節(jié)知識的掌握情況.必做題和選做題如果上課有時間打算用砸金蛋的形式調動課堂.
。┌鍟O計
16.1.1 二次根式 定義:形如 的式子叫做 二次根式 注:(雙重非負性) (老師板書) (學生演板)
二次根式教案14
教學目的
1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;
2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。
教學重點
最簡二次根式的定義。
教學難點
一個二次根式化成最簡二次根式的方法。
教學過程
一、復習引入
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導學生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學生回答:
二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
二、講解新課
1.總結學生回答的內容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應化為因式連乘積的形式。
2.練習:
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結
把二次根式化成最簡二次根式的根據(jù)是什么?應用了什么方法?
當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術平方根的性質,把開得盡方的因數(shù)或因式用它的算術平方根代替移到根號外面去。
當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質和商的算術平方根的.性質化去分母。
此方法是先根據(jù)分式的基本性質把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
三、鞏固練習
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
四、小結
本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術平方根和商的算術平方根的性質把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。
五、布置作業(yè)
下列各式化成最簡二次根式:
二次根式教案15
第十六章 二次根式
代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式
5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結論.20=22×5,所以正整數(shù)的'最小值為5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)寬:3 ;長:5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化簡二次根式時,當根號內的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.
解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應是 =-a.
本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.
在探究二次根式的性質時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.
在探究完成二次根式的性質1后,總結學習方法,再放手讓學生自主探究二次根式的性質2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.
練習(教材第4頁)
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
習題16.1(教材第5頁)
1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)設圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.
6.解:設AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.
7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內有意義.
8.解:設h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.
9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.
10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.
如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.
〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.
解:由數(shù)軸可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解題策略] 結合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結合的思想.
已知a,b,c為三角形的三條邊,則+= .
〔解析〕 根據(jù)三角形三邊的關系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解題策略] 此類化簡問題要特別注意符號問題.
化簡:.
〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.
解:當x≥3時,=|x-3|=x-3;
當x<3時,=|x-3|=-(x-3)=3-x.
[解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.
5
O
M
【二次根式教案】相關文章:
二次根式教案11-10
二次根式教案優(yōu)秀06-26
二次根式的數(shù)學教案03-26
【熱門】二次根式教案三篇10-24
關于二次根式教案3篇10-20
有關二次根式教案三篇10-25
《二次根式》教學教案(精選10篇)08-16
二次根式教案合集五篇04-08
二次根式教案模板7篇10-30