久久精品99久久|国产剧情网站91|天天色天天干超碰|婷婷五天月一av|亚州特黄一级片|亚欧超清无码在线|欧美乱码一区二区|男女拍拍免费视频|加勒比亚无码人妻|婷婷五月自拍偷拍

教案

二次根式教案

時間:2022-10-20 21:07:13 教案 我要投稿

關(guān)于二次根式教案3篇

  在教學(xué)工作者實(shí)際的教學(xué)活動中,編寫教案是必不可少的,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。那么應(yīng)當(dāng)如何寫教案呢?以下是小編收集整理的二次根式教案3篇,僅供參考,大家一起來看看吧。

關(guān)于二次根式教案3篇

二次根式教案 篇1

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的概念.

  2.內(nèi)容解析

  本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).

  教材先設(shè)置了三個實(shí)際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.

  本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

 。1)體會研究二次根式是實(shí)際的需要.

  (2)了解二次根式的概念.

  2. 教學(xué)目標(biāo)解析

  (1)學(xué)生能用二次根式表示實(shí)際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

 。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

  三、教學(xué)問題診斷分析

  對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù).教學(xué)時注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的`有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷.

  本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性.

  四、教學(xué)過程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問題

  問題1你能用帶有根號的的式子填空嗎?

 。1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

  (2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

 。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

  師生活動:學(xué)生獨(dú)立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價.

  【設(shè)計(jì)意圖】讓學(xué)生在填空過程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會研究二次根式的必要性.

  問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

  師生活動:教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.

  【設(shè)計(jì)意圖】為概括二次根式的概念作鋪墊.

  2.抽象概括,形成概念

  問題3 你能用一個式子表示一個非負(fù)數(shù)的算術(shù)平方根嗎?

  師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

  【設(shè)計(jì)意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.

  追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?

  師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.

  【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.

  3.辨析概念,應(yīng)用鞏固

  例1 當(dāng) 時怎樣的實(shí)數(shù)時, 在實(shí)數(shù)范圍內(nèi)有意義?

  師生活動:引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負(fù)數(shù)的理解.

  例2 當(dāng) 是怎樣的實(shí)數(shù)時, 在實(shí)數(shù)范圍內(nèi)有意義? 呢?

  師生活動:先讓學(xué)生獨(dú)立思考,再追問.

  【設(shè)計(jì)意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解.

  問題4 你能比較 與0的大小嗎?

  師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強(qiáng)化學(xué)生對二次根式本身為非負(fù)數(shù)的理解,

  【設(shè)計(jì)意圖】通過這一活動的設(shè)計(jì),提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.

  4.綜合運(yùn)用,鞏固提高

  練習(xí)1 完成教科書第3頁的練習(xí).

  練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時,下列各式有意義.

 。1) ;(2) ;(3) ;(4) .

  【設(shè)計(jì)意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

  【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

  5.總結(jié)反思

  教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.

 。1)本節(jié)課你學(xué)到了哪一類新的式子?

 。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

 。3)二次根式與算術(shù)平方根有什么關(guān)系?

  師生活動:教師引導(dǎo),學(xué)生小結(jié).

  【設(shè)計(jì)意圖】:學(xué)生共同總結(jié),互相取長補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法.

  6.布置作業(yè):

  教科書習(xí)題16.1第1,3,5, 7,10題.

  五、目標(biāo)檢測設(shè)計(jì)

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【設(shè)計(jì)意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).

  2. 當(dāng) 時,二次根式 無意義.

  【設(shè)計(jì)意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

  3.當(dāng) 時,二次根式 有最小值,其最小值是 .

  【設(shè)計(jì)意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運(yùn)用.

  4.對于 ,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.

  【設(shè)計(jì)意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

二次根式教案 篇2

  一、教學(xué)目標(biāo)

  1.理解分母有理化與除法的關(guān)系.

  2.掌握二次根式的分母有理化.

  3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運(yùn)算能力.

  4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想

  二、教學(xué)設(shè)計(jì)

  小結(jié)、歸納、提高

  三、重點(diǎn)、難點(diǎn)解決辦法

  1.教學(xué)重點(diǎn):分母有理化.

  2.教學(xué)難點(diǎn):分母有理化的技巧.

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、多媒體

  六、師生互動活動設(shè)計(jì)

  復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主

  七、教學(xué)過程

  【復(fù)習(xí)提問】

  二次根式混合運(yùn)算的步驟、運(yùn)算順序、互為有理化因式.

  例1 說出下列算式的運(yùn)算步驟和順序:

 。1) (先乘除,后加減).

 。2) (有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運(yùn)算).

 。3)辨別有理化因式:

  有理化因式: 與 , 與 , 與 …

  不是有理化因式: 與 , 與 …

  化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

  例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

  引入新課題.

  【引入新課】

  化簡式子 ,乘以什么樣的.式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

  例2 把下列各式的分母有理化:

 。1) ; (2) ; (3)

  解:略.

  注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

二次根式教案 篇3

  【 學(xué)習(xí)目標(biāo) 】

  1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

  2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。

  3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

  【 學(xué)習(xí)重難點(diǎn) 】

  1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計(jì)算。

  2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

  【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

  【 學(xué)習(xí)流程 】

  一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

  學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

  二、 課堂教學(xué)

  (一)合作學(xué)習(xí)階段。

  教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時的引導(dǎo)、點(diǎn)撥,對普遍存在的問題做好記錄。

  (二)集體講授階段。(15分鐘左右)

  1. 各小組推選代表依次對課堂引導(dǎo)材料中的'問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

  2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。

  3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。

  (三)當(dāng)堂檢測階段

  為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。

  (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

  三、 課后作業(yè)(課后作業(yè)見附件2)

  教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

  四、板書設(shè)計(jì)

  課題:二次根式(1)

  二次根式概念 例題 例題

  二次根式性質(zhì)

  反思:

【二次根式教案】相關(guān)文章:

二次根式教案11-10

二次根式教案優(yōu)秀06-26

《二次根式》教學(xué)教案(精選6篇)07-21

二次根式教案模板7篇10-30

有關(guān)二次根式教案三篇10-25

【熱門】二次根式教案三篇10-24

二次根式教案合集五篇04-08

二次根式教案范文十篇04-17

二次根式教案錦集10篇04-14