- 相關(guān)推薦
利用等式的性質(zhì)解方程教案設(shè)計
一、目的要求
使學(xué)生會用移項解方程,一元一次方程 利用等式的性質(zhì)解方程。
二、內(nèi)容分析
從本節(jié)課開始系統(tǒng)講解一元一次方程的解法。解一元一次方程是一個有目的、有根據(jù)、有步驟的變形過程。其目的是將方程最終變?yōu)閤=a的形式;其根據(jù)是等式的性質(zhì)和移項法則,其一般步驟是去分母、去括號、移項、合并、系數(shù)化成1。
x=a的形式有如下特點:
。1)沒有分母;
。2)沒有括號;
(3)未知項在方程的一邊,已知項在方程的另一邊;
(4)沒有同類項;
。5)未知數(shù)的系數(shù)是1。
在講方程的解法時,要把所給方程與x=a的形式加以比較,針對它們的不同點,采取步驟加以變形。
根據(jù)方程的特點,以x=a的形式為目標對原方程進行變形,是解一元一次方程的基本思想。
解方程的第一節(jié)課告訴學(xué)生解方程就是根據(jù)等式的性質(zhì)把原方程逐步變形為x=a的形式就可以了。重點在于引進移項這一變形并用它來解方程。
用等式性質(zhì)1解方程與用移項解方程,效果是一樣的。但移項用起來更方便一些。
如解方程 7x-2=6x-4
時,用移項可直接得到 7x-6x=4+2。
而用等式性質(zhì)1,一般要用兩次:
(1)兩邊都減去6x; (2)兩邊都加上2,初中數(shù)學(xué)教案《數(shù)學(xué)教案-第四章 一元一次方程 利用等式的性質(zhì)解方程》。
因為一下子確定兩邊都加上(-6x+2)不太容易。因此要引進移項,用移項來解方程。移項實際上也是用等式的性質(zhì),在引進過程中,要結(jié)合教科書第192頁及第193頁的圖強調(diào)移項要變號。移項解方程后的檢驗,可以驗證移項解方程的正確性。
三、教學(xué)過程
復(fù)習(xí)提問:
。1)敘述等式的性質(zhì)。
。2)什么叫做方程的解?什么叫做解方程?
新課講解:
1.利用等式性質(zhì)1可以解一些方程。例如,方程 x-7=5
的兩邊都加上7,就可以得到 x=5+7,
x=12。
又如方程 7x=6x-4
的兩邊都減去6x,就可以得到 7x-6x=-4,
x=-4。
然后問學(xué)生如何用等式性質(zhì)1解下列方程 3x-2=2x+1。
2.當(dāng)學(xué)生感覺利用等式性質(zhì)1解方程3x-2=2x+1比較困難時,轉(zhuǎn)而分析解方程x-7=5,7x=6z-4的過程。解這兩個方程道首先把它們變形成未知項在方程的一邊,已知項在方程的另一邊的形式,要達到這個目的,可以在方程兩邊都加上(或減去)同一個數(shù)或整式。
【利用等式的性質(zhì)解方程教案設(shè)計】相關(guān)文章:
數(shù)學(xué)教案《一元一次方程-利用等式的性質(zhì)解方程》11-11
初中數(shù)學(xué) 第一冊一元一次方程 利用等式的性質(zhì)解方程 教案12-29
不等式的性質(zhì)教案01-23
高中數(shù)學(xué) 不等式的性質(zhì)一 教案12-28
小學(xué)數(shù)學(xué)解方程教學(xué)教案設(shè)計(精選11篇)07-05
《9.1.1不等式及其解集》教學(xué)教案設(shè)計10-09
高中《數(shù)學(xué)是有用的之生活中的不等式》教學(xué)教案設(shè)計10-09