久久精品99久久|国产剧情网站91|天天色天天干超碰|婷婷五天月一av|亚州特黄一级片|亚欧超清无码在线|欧美乱码一区二区|男女拍拍免费视频|加勒比亚无码人妻|婷婷五月自拍偷拍

教案

高一數(shù)學教案

時間:2023-12-26 08:22:00 教案 我要投稿

高一數(shù)學教案

  作為一位不辭辛勞的人民教師,時常要開展教案準備工作,教案有助于順利而有效地開展教學活動。教案要怎么寫呢?下面是小編幫大家整理的高一數(shù)學教案,希望能夠幫助到大家。

高一數(shù)學教案

高一數(shù)學教案1

  重點

  理解角與角的相關概念;掌握角的度量單位以及單位之間的換算.

  難點

  理解角與角的相關概念;掌握角的度量單位以及單位之間的換算.

  一、創(chuàng)設情境,導入新知

  展示實物:時鐘,圓規(guī),折扇等.

  (1)觀察實物與圖片,你發(fā)現(xiàn)其中有什么相同圖形嗎?學生回答,教師點評,注意鼓勵學生.

  (2)你能把觀察得到的圖形畫在本子上或黑板上嗎?這是一些什么圖形?思考,動手畫一畫.

  (3)從黑板上這些不同的圖形中,你能歸納出它們的共同特點嗎?

  學生相互交流并回答,挖掘和利用現(xiàn)實生活中與角相關的背景,讓學生在現(xiàn)實背景中認識角,培養(yǎng)學生的動手能力.引導學生觀察并歸納角的共同點,進而引入課題.

  二、自主合作,感受新知

  回顧以前學的知識、閱讀課文并結(jié)合生活實際,完成“預習導學”部分.

  三、師生互動,理解新知

  探究點一:角的概念及表示方法

  活動一:從生活中認識角

  我們看物體時,有視角,鐘表的指針轉(zhuǎn)動也形成角.請同學們看課本后回答下面問題.

  (1)角是一個幾何圖形,請大家說說,角是由什么圖形構(gòu)成的?(學生回答,教師點評,注意鼓勵學生)

  (2)如果我們把角看作是一條射線繞它的端點旋轉(zhuǎn)圍成的圖形,那么始邊和終邊又指什么?

  教師總結(jié):角有兩個定義,一個是靜態(tài)的定義,把角看作由一點出發(fā)的兩條射線組成的圖形;另一個定義是動態(tài)的,把角看作一條射線繞端點旋轉(zhuǎn)所形成的圖形,把開始位置的射線叫做始邊,把終止位置的射線叫做終邊.

  (3)請同學們說一說,我們?nèi)粘I钪,哪些地方有角?學生舉例)

  活動二:角的表示方法

  我們怎樣表示角呢?請同學們看課本上說了幾種表示方法?(學生先看書,后回答)

  教師總結(jié):(1)用三個大寫字母可以表示一個角,比如∠AOB.

  練習:誰能指出下列各角的頂點和兩條邊?

  注意:①三個字母的順序有規(guī)定,頂點的字母必須寫在中間.

 、陧旤c的字母不一定用O,角的始邊與終邊的字母也可以隨意.

  (2)當一個頂點只有一個角時,也可以用頂點的字母表示.比如,下面的角可以表示為∠O.

  練習:判斷下列角可以用頂點的字母表示嗎?

  (3)用數(shù)字或小寫的希臘字母表示角.(注意:角中不能有角)

  練習:下面表示角的方法,哪個是正確的?哪個是錯誤的.?

  探究點二:角的度量

  活動三:角的度量

  (1)請同學們借助量角器畫出下列各角:

 、30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°

  學生畫圖,教師指導.(根據(jù)需要教師可先做示范)

  (2)任意畫一個角,用量角器測量角的大。釂枺喝绻@個角的度數(shù)不是整數(shù),應該怎樣表示這個角的度數(shù)呢?引出角的度量單位是度、分、秒.

  教師總結(jié):它們之間的關系是:1°=60′,1′=60″ (強調(diào)度、分、秒是60進制,不是十進制).

  (3)還有什么單位是60進制?

  (4)讓學生畫一個1°角,感受1°角有多大.

  四、應用遷移,運用新知

  1.角的定義

  例1 下列說法中,正確的是( )

  A.兩條射線組成的圖形叫做角

  B.有公共端點的兩條線段組成的圖形叫做角

  C.角可以看作是由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形

  D.角可以看作是由一條線段繞著它的端點旋轉(zhuǎn)而形成的圖形

  解析:A.有公共端點的兩條射線組成的圖形叫做角,故錯誤;B.根據(jù)A可得B錯誤;C.角可以看作是由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形,正確;D.據(jù)C可得D錯誤.

  方法總結(jié):此題考查了角的定義,有公共端點的兩條不重合的射線組成的圖形叫做角.這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊.

  2.角的表示方法

  例2 下列四個圖形中,能用∠1、∠AOB、∠O三種方法表示同一個角的圖形是( )

  A B C D

  解析:在角的頂點處有多個角時,用一個字母表示這個角,這種方法是錯誤的.所以A、C、D錯誤.

  方法總結(jié):角的兩個基本元素中,邊是兩條射線,

  頂點是這兩條射線的公共端點.

  3.判斷角的數(shù)量

  例3 如圖所示,在∠AOB的內(nèi)部有3條射線,則圖中角的個數(shù)為( )

  A.10 B.15 C.5 D.20

  解析:可以根據(jù)圖形依次數(shù)出角的個數(shù);或者根據(jù)公式求圖中角的個數(shù)是12×5×(5-1)=10.

  方法總結(jié):若從一點發(fā)出n條射線,則構(gòu)成12n(n-1)個角.

  4.角的度量

  例4 見課本P144例1.

  方法總結(jié):用度、分、秒表示的角度和用度表示的角度的相互轉(zhuǎn)化的過程正好相反:大單位化小單位,乘以進率;而小單位化大單位要除以進率.

  五、嘗試練習,掌握新知

  課本P144練習第1、2題、P145練習第1、2題.

  “隨堂演練”部分.

  六、課堂小結(jié),梳理新知

  通過本節(jié)課的學習,我們都學到了哪些數(shù)學知識和方法?

  本節(jié)課學習了角及角的有關概念,并會表示角;知道角的度量單位,并能進行單位的轉(zhuǎn)換;會把角的知識與現(xiàn)實生活相聯(lián)系,用角的知識解釋生活中的一些現(xiàn)象.

  七、深化練習,鞏固新知

  課本P145~146習題4.4第1~4題.

  “課時作業(yè)”部分.

高一數(shù)學教案2

  一、教學目標

  1、知識與技能:

  (1)通過實物操作,增強學生的直觀感知。

  (2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。

  (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

  (4)會表示有關于幾何體以及柱、錐、臺的分類。

  2、過程與方法:

  (1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

  (2)讓學生觀察、討論、歸納、概括所學的知識。

  3、情感態(tài)度與價值觀:

  (1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

  (2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點:

  讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

  難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

  三、教學用具

  (1)學法:觀察、思考、交流、討論、概括。

  (2)實物模型、投影儀。

  四、教學過程

  (一)創(chuàng)設情景,揭示課題

  1、由六根火柴最多可搭成幾個三角形?(空間:4個)

  2、在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?

  3、展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體。

  問題:請根據(jù)某種標準對以上空間物體進行分類。

  (二)、研探新知

  空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;

  旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺、球。

  1、棱柱的結(jié)構(gòu)特征:

  (1)觀察棱柱的幾何物體以及投影出棱柱的圖片,思考:它們各自的特點是什么?共同特點是什么?

  (學生討論)

  (2)棱柱的主要結(jié)構(gòu)特征(棱柱的概念):

 、儆袃蓚面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。

  (3)棱柱的表示法及分類:

  (4)相關概念:底面(底)、側(cè)面、側(cè)棱、頂點。

  2、棱錐、棱臺的結(jié)構(gòu)特征:

  (1)實物模型演示,投影圖片;

  (2)以類似的方法,根據(jù)出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關的.概念、分類以及表示。

  棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。

  棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。

  3、圓柱的結(jié)構(gòu)特征:

  (1)實物模型演示,投影圖片——如何得到圓柱?

  (2)根據(jù)圓柱的概念、相關概念及圓柱的表示。

  4、圓錐、圓臺、球的結(jié)構(gòu)特征:

  (1)實物模型演示,投影圖片

  ——如何得到圓錐、圓臺、球?

  (2)以類似的方法,根據(jù)圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關概念和表示。

  5、柱體、錐體、臺體的概念及關系:

  探究:棱柱、棱錐、棱臺都是多面體,它們在結(jié)構(gòu)上有哪些相同點和不同點?三者的關系如何?當?shù)酌姘l(fā)生變化時,它們能否互相轉(zhuǎn)化?

  圓柱、圓錐、圓臺呢?

  6、簡單組合體的結(jié)構(gòu)特征:

  (1)簡單組合體的構(gòu)成:由簡單幾何體拼接或截去或挖去一部分而成。

  (2)實物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。

  (3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。

  (三)排難解惑,發(fā)展思維

  1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)

  2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  (四)鞏固深化

  練習:課本P7練習1、2;課本P8習題1.1第1、2、3、4、5題

  (五)歸納整理:由學生整理學習了哪些內(nèi)容

高一數(shù)學教案3

  一、課標要求:

  理解充分條件、必要條件與充要條件的意義,會判斷充分條件、必要條件與充要條件.

  二、知識與方法回顧:

  1、充分條件、必要條件與充要條件的概念:

  2、從邏輯推理關系上看充分不必要條件、必要不充分條件與充要條件:

  3、從集合與集合之間關系上看充分條件、必要條件與充要條件:

  4、特殊值法:判斷充分條件與必要條件時,往往用特殊值法來否定結(jié)論

  5、化歸思想:

  表示p等價于q,等價命題可以進行相互轉(zhuǎn)化,當我們要證明p成立時,就可以轉(zhuǎn)化為證明q成立;

  這里要注意原命題 逆否命題、逆命題 否命題只是等價形式之一,對于條件或結(jié)論是不等式關系(否定式)的命題一般應用化歸思想.

  6、數(shù)形結(jié)合思想:

  利用韋恩圖(即集合的包含關系)來判斷充分不必要條件,必要不充分條件,充要條件.

  三、基礎訓練:

  1、 設命題若p則q為假,而若q則p為真,則p是q的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  2、 設集合M,N為是全集U的兩個子集,則 是 的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  3、 若 是實數(shù),則 是 的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  四、例題講解

  例1 已知實系數(shù)一元二次方程 ,下列結(jié)論中正確的是 ( )

  (1) 是這個方程有實根的充分不必要條件

  (2) 是這個方程有實根的必要不充分條件

  (3) 是這個方程有實根的充要條件

  (4) 是這個方程有實根的充分不必要條件

  A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

  例2 (1)已知h 0,a,bR,設命題甲: ,命題乙: 且 ,問甲是乙的 ( )

  (2)已知p:兩條直線的斜率互為負倒數(shù),q:兩條直線互相垂直,則p是q的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  變式:a = 0是直線 與 平行的 條件;

  例3 如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s

  的充分條件,那么命題p是命題q的 條件;命題s是命題q的' 條件;命題r是命題q的 條件.

  例4 設命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分條件,求實數(shù)a的取值范圍;

  例5 設 是方程 的兩個實根,試分析 是兩實根 均大于1的什么條件?并給予證明.

  五、課堂練習

  1、設命題p: ,命題q: ,則p是q的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  2、給出以下四個命題:①若p則q②若﹁r則﹁q③ 若r則﹁s

 、苋籀鑣則q若它們都是真命題,則﹁p是s的 條件;

  3、是否存在實數(shù)p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說明理由.

  六、課堂小結(jié):

  七、教學后記:

  高三 班 學號 姓名 日期: 月 日

  1、 A B是AB=B的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  2、 是 的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  3、 2x2-5x-30的一個必要不充分條件是 ( )

  A.-

  4、2且b是a+b4且ab的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分也不必要條件

  5、設a1、b1、c1、a2、b2、c2均為非零實數(shù),不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么 是 M=N 的 ( )

  A.充分不必要條件 B.必要不充分條件

  C.充要條件 D.既不充分又不必要條件

  6、若命題A: ,命題B: ,則命題A是B的 條件;

  7、設條件p:|x|=x,條件q:x2-x,則p是q的 條件;

  8、方程mx2+2x+1=0至少有一個負根的充要條件是 ;

  9、關于x的方程x2+mx+n = 0有兩個小于1的正根的一個充要條件是 ;

  10、已知 ,求證: 的充要條件是 ;

  11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實數(shù)m的取值范圍。

  12、已知關于x的方程(1-a)x2+(a+2)x-4=0,aR,求:

  (1)方程有兩個正根的充要條件;

  (2)方程至少有一正根的充要條件.

高一數(shù)學教案4

  教學目標:

  (1)了解集合的表示方法;

  (2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  教學重點:掌握集合的表示方法;

  教學難點:選擇恰當?shù)谋硎痉椒?

  教學過程:

  一、復習回顧:

  1.集合和元素的定義;元素的三個特性;元素與集合的關系;常用的數(shù)集及表示。

  2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關系

  二、新課教學

  (一).集合的表示方法

  我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

  說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考

  慮元素的順序。

  2.各個元素之間要用逗號隔開;

  3.元素不能重復;

  4.集合中的元素可以數(shù),點,代數(shù)式等;

  5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規(guī)律顯示清楚后方能用省略號,象自然數(shù)集N用列舉法表示為

  例1.(課本例1)用列舉法表示下列集合:

  (1)小于10的所有自然數(shù)組成的集合;

  (2)方程x2=x的所有實數(shù)根組成的集合;

  (3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;

  (4)方程組 的解組成的集合。

  思考2:(課本P4的思考題)得出描述法的定義:

  (2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內(nèi)。

  具體方法:在花括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  一般格式:

  如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

  說明:

  1.課本P5最后一段話;

  2.描述法表示集合應注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數(shù)},即代表整數(shù)集Z。

  辨析:這里的.{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。

  例2.(課本例2)試分別用列舉法和描述法表示下列集合:

  (1)方程x2—2=0的所有實數(shù)根組成的集合;

  (2)由大于10小于20的所有整數(shù)組成的集合;

  (3)方程組 的解。

  思考3:(課本P6思考)

  說明:列舉法與描述法各有優(yōu)點,應該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

  (二).課堂練習:

  1.課本P6練習2;

  2.用適當?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)

  3.集合A={x| ∈Z,x∈N},則它的元素是 。

  4.已知集合A={x|-3

  歸納小結(jié):

  本節(jié)課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

  作業(yè)布置:

  1. 習題1.1,第3.4題;

  2. 課后預習集合間的基本關系.

高一數(shù)學教案5

  一、教材的本質(zhì)、地位與作用

  對數(shù)函數(shù)(第二課時)是20xx人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。

  二、教學目標

  根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學生的認知特點確定教學目標如下:

  學習目標:

  1、復習鞏固對數(shù)函數(shù)的圖像及性質(zhì)

  2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小

  能力目標:

  1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結(jié)合能力

  2、學生運用已學知識,已有經(jīng)驗解決新問題的能力

  3、探索出方法,有條理闡述自己觀點的能力

  德育目標:

  培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)

  三、教材的重點及難點

  對數(shù)比大小發(fā)揮的是承上啟下的作用,對前一是復習鞏固對數(shù)函數(shù)的圖像和性質(zhì),二是對指數(shù)中比大小問題的數(shù)學思想及方法的再次體現(xiàn)和應用,對后為解對數(shù)方程及對數(shù)不等式奠定基礎。所以確定本節(jié)課重點:運用對數(shù)函數(shù)圖像性質(zhì)比較兩數(shù)的大小

  教學中將在以下2個環(huán)節(jié)中突出教學重點:

  1、利用學生預習后的心得交流,資源共享,互補不足

  2、通過適當?shù)木毩暎訌妼忸}方法的掌握及原理的理解

  另一方面,學生在預習后上課的情況下,對于課本上知識有了一定的認識,但本節(jié)課教師要補充第三類比大小問題———同真異底型,對于學生以小組為單位自主探究有一定的挑戰(zhàn)性。所以確定本節(jié)課難點:同真異底的對數(shù)比大小

  教學中會在以下3個方面突破教學難點:

  1、教師調(diào)整角色,讓學生成為學習的主人,教師在其中起引導作用即可。

  2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。

  3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。

  四、學生學情分析

  長處:高一學生經(jīng)過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的.解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。

  學生可能遇到的困難:本節(jié)課從教學內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。

  五、教法特點

  新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可。基于此,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結(jié),引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。

  六、教學過程分析

  1、課件展示本節(jié)課學習目標

  設計意圖:明確任務,激發(fā)興趣

  2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質(zhì))

  設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。

  3、預習后心得交流

  1)同底對數(shù)比大小

  2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小

  以課本例題為例,交流解題思路,題后總結(jié)此類型比大小問題的一般方法,而后通過練習加強理解鞏固

  設計意圖:通過學生的預習,自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。

  4、合作探究——同真異底型的對數(shù)比大小

  以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。

  設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質(zhì)解決問題,關鍵要做到“腦中有圖”,以“形”促“數(shù)”。

  5、小結(jié)

  以學生自主小結(jié)的方式總結(jié)本節(jié)課得收獲,教師可引導小結(jié)三個方面:所學內(nèi)容、數(shù)學思想、數(shù)學方法

  6、思考題

  以20xx高考題為例,讓學生學以致用,增強數(shù)學學習興趣。

  7、作業(yè)

  包括兩個方面:

  1、書寫作業(yè)

  2、下節(jié)課前的預習作業(yè)

  七、教學效果分析

  通過本節(jié)課的教學實例來看,這種通過課本內(nèi)容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學生自己小結(jié)的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結(jié)知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結(jié)內(nèi)容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。

高一數(shù)學教案6

  學習目標

  1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)

  2、掌握標準方程中的幾何意義

  3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題

  一、預習檢查

  1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、

  2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、

  3、雙曲線的漸進線方程為、

  4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、

  二、問題探究

  探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、

  探究2、雙曲線與其漸近線具有怎樣的關系、

  練習:已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、

  例1根據(jù)以下條件,分別求出雙曲線的標準方程、

  (1)過點,離心率、

  (2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、

  例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、

  例3(理)求離心率為,且過點的雙曲線標準方程、

  三、思維訓練

  1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的斜率是、

  2、橢圓的離心率為,則雙曲線的離心率為、

  3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、

  4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的'左、右焦點,若,則、

  四、知識鞏固

  1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是、

  2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為、

  3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、

  4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、

  5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、

高一數(shù)學教案7

  一、教學目標

  1、知識與技能

 。1)通過實物操作,增強學生的直觀感知。

 。2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。

 。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

 。4)會表示有關于幾何體以及柱、錐、臺的分類。

  2、過程與方法

 。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

  (2)讓學生觀察、討論、歸納、概括所學的知識。

  3、情感態(tài)度與價值觀

 。1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

 。2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點、難點

  重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。 難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

  三、教學用具

  (1)學法:觀察、思考、交流、討論、概括。

 。2)實物模型、投影儀 四、教學思路

  (一)創(chuàng)設情景,揭示課題

  1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。

  2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。

  (二)、研探新知

  1、引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。

  2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?

  3、組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎上得出棱柱的主要結(jié)構(gòu)特征。

 。1)有兩個面互相平行;

  (2)其余各面都是平行四邊形;

  (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4、教師與學生結(jié)合圖形共同得出棱柱相關概念以及棱柱的表示。

  5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?

  請列舉身邊具有已學過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的`?

  6、以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關的概念,分類以及表示。

  7、讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。

  8、引導學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

  9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

  10、現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。請列舉身邊具有已學過的幾何結(jié)構(gòu)特征的物體,并說出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  (三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

  1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)

  2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3、課本P8,習題1.1 A組第1題。

  4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  5、棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

  四、鞏固深化

  練習:課本P7 練習1、2(1)(2) 課本P8 習題1.1 第2、3、4題 五、歸納整理

  由學生整理學習了哪些內(nèi)容 六、布置作業(yè)

  課本P8 練習題1.1 B組第1題

  課外練習 課本P8 習題1.1 B組第2題

高一數(shù)學教案8

  一、教學目標

  1.知識與技能

  (1)解二分法求解方程的近似解的思想方法,會用二分法求解具體方程的近似解;

 。2)體會程序化解決問題的思想,為算法的學習作準備。

  2.過程與方法

 。1)讓學生在求解方程近似解的實例中感知二分發(fā)思想;

 。2)讓學生歸納整理本節(jié)所學的知識。

  3.情感、態(tài)度與價值觀

 、袤w會二分法的程序化解決問題的思想,認識二分法的價值所在,使學生更加熱愛數(shù)學;

 、谂囵B(yǎng)學生認真、耐心、嚴謹?shù)臄?shù)學品質(zhì)。

  二、 教學重點、難點

  重點:用二分法求解函數(shù)f(x)的零點近似值的步驟。

  難點:為何由︱a - b ︳< 便可判斷零點的近似值為a(或b)?

  三、 學法與教學用具

  1.想-想。

  2.教學用具:計算器。

  四、教學設想

 。ㄒ唬(chuàng)設情景,揭示課題

  提出問題:

  (1)一元二次方程可以用公式求根,但是沒有公式可以用來求解放程 ㏑x+2x-6=0的根;聯(lián)系函數(shù)的零點與相應方程根的關系,能否利用函數(shù)的有關知識來求她的根呢?

 。2)通過前面一節(jié)課的學習,函數(shù)f(x)=㏑x+2x-6在區(qū)間內(nèi)有零點;進一步的問題是,如何找到這個零點呢?

 。ǘ⒀杏懶轮

  一個直觀的想法是:如果能夠?qū)⒘泓c所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點的近似值;為了方便,我們通過“取中點”的方法逐步縮小零點所在的范圍。

  取區(qū)間(2,3)的中點2.5,用計算器算得f(2.5)≈-0.084,因為f(2.5)xf(3)<0,所以零點在區(qū)間(2.5,3)內(nèi);

  再取區(qū)間(2.5,3)的中點2.75,用計算器算得f(2.75)≈0.512,因為f(2.75)xf(2.5)<0,所以零點在(2.5,2.75)內(nèi);

  由于(2,3),(2.5,3),(2.5,2.75)越來越小,所以零點所在范圍確實越來越小了;重復上述步驟,那么零點所在范圍會越來越小,這樣在有限次重復相同的步驟后,在一定的精確度下,將所得到的零點所在區(qū)間上任意的一點作為零點的近似值,特別地可以將區(qū)間的端點作為零點的近似值。例如,當精確度為0.01時,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數(shù)f(x)=㏑x+2x-6零點的近似值,也就是方程㏑x+2x-6=0近似值。

  這種求零點近似值的方法叫做二分法。

  1.師:引導學生仔細體會上邊的這段文字,結(jié)合課本上的相關部分,感悟其中的思想方法.

  生:認真理解二分法的函數(shù)思想,并根據(jù)課本上二分法的一般步驟,探索其求法。

  2.為什么由︱a - b ︳<便可判斷零點的.近似值為a(或b)?

  先由學生思考幾分鐘,然后作如下說明:

  設函數(shù)零點為x0,則a<x0<b,則:

  0<x0-a<b-a,a-b<x0-b<0;

  由于︱a - b ︳<,所以

  ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

  即a或b 作為零點x0的近似值都達到了給定的精確度。

 (三)、鞏固深化,發(fā)展思維

  1.學生在老師引導啟發(fā)下完成下面的例題

  例2.借助計算器用二分法求方程2x+3x=7的近似解(精確到0.01)

  問題:原方程的近似解和哪個函數(shù)的零點是等價的?

  師:引導學生在方程右邊的常數(shù)移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點。

  生:借助計算機或計算器畫出函數(shù)的圖象,結(jié)合圖象確定零點所在的區(qū)間,然后利用二分法求解.

  (四)、歸納整理,整體認識

  在師生的互動中,讓學生了解或體會下列問題:

 。1)本節(jié)我們學過哪些知識內(nèi)容?

  (2)你認為學習“二分法”有什么意義?

 。3)在本節(jié)課的學習過程中,還有哪些不明白的地方?

  (五)、布置作業(yè)

  P92習題3.1A組第四題,第五題。

高一數(shù)學教案9

  教學目標:

  1、掌握平面向量的數(shù)量積及其幾何意義;

  2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;

  3、了解用平面向量的數(shù)量積可以處理有關長度、角度和垂直的問題;

  4、掌握向量垂直的條件、

  教學重難點:

  教學重點:平面向量的數(shù)量積定義

  教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用

  教學工具:

  投影儀

  教學過程:

  一、復習引入:

  1、向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ

  五,課堂小結(jié)

  (1)請學生回顧本節(jié)課所學過的.知識內(nèi)容有哪些?所涉及到的主要數(shù)學思想方法有那些?

  (2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。

  (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

  六、課后作業(yè)

  P107習題2、4A組2、7題

  課后小結(jié)

  (1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學思想方法有那些?

  (2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。

  (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

  課后習題

高一數(shù)學教案10

  教學目標

  (1)理解交集與并集的概念;

 。2)掌握有關集合的術語和符號,并會用它們正確表示一些簡單的集合;

 。3)能用圖示法表示集合之間的關系;

 。4)掌握兩個較簡單集合的交集、并集的求法;

 。5)通過對交集、并集概念的講解,培養(yǎng)學生觀察、比較、分析、概括、等能力,使學生認識由具體到抽象的思維過程;

  (6)通過對集合符號語言的學習,培養(yǎng)學生符號表達能力,培養(yǎng)嚴謹?shù)?strong>學習作風,養(yǎng)成良好的學習習慣.

  教學重點交集和并集的概念

  教學難點交集和并集的概念、符號之間的區(qū)別與聯(lián)系

  教學過程設計

  一、導入新課

  【提問】

  試敘述子集、補集的概念?它們各涉及幾個集合?

  補集涉及三個集合,補集是由一個集合及其一個子集而產(chǎn)生的第三個集合.由兩個集合產(chǎn)生第三個集合不僅有補集,在實際中還有許多其他情形,我們今天就來學習另外兩種.

  回憶.

  傾聽.集中注意力.激發(fā)求知欲.

  鞏固舊知.為導入新課作準備.

  滲透集合運算的意識.

  二、新課

  【引入】我們看下面圖(用投影儀打出,軟片做成左右兩向遮啟式,便于同學在“動態(tài)”中進行觀察).

  【設問】

  1.第一次看到了什么?

  2.第二次看到了什么

  3.第三次又看到了什么?

  4.陰影部分的周界線是一條封閉曲線,它的內(nèi)部(陰影部分)當然表示一個新的集合,試問這個新集合中的元素與集A 、集B元素有何關系?

  【介紹】這又是一種由兩個集合產(chǎn)生第三個集合的情況,在今后學習中會經(jīng)常出現(xiàn),為方便起見,稱集A與集B的公共部分為集A與集B的交集.

  【設問】請大家從元素與集合的關系試敘述文集的概念.

  【助學】“且”的含義是“同時”,“又”.

  “所有”的含義是A與B的`公共元素一個不能少.

  【介紹】集合A與集合B的交集記作.讀做“ A交B ”?

  【助學】符號“ ”形如帽子戴在頭

  上,產(chǎn)生“交”的感覺,所以開口向下.切記該符號不要與表示子集的符號“ ”、“ ”混淆.

  【設問】集A與集B的交集除上面看到的用圖示法表示交集外,還可以用我們學習過的哪種方法表示?如何表示?

  【設問】與A有何關系?如何表示?與B有何關系?如何表示?

  【隨練】寫出,的交集.

  【設問】大家是如何寫出的?

  我們再看下面的圖.

  【設問】

  1.第一次看到了什么?

  2.第二次除看到集B和外,還看到了什么集合?

  3.第三次看到了什么?如何用有關集合的符號表示?

  4.第四次看到了什么?這與剛才看到的集合類似,請用有關集合的符號表示.

  5.第五次同學看出上面看到的集A 、集B 、集、集、集,它們都可以用我們已經(jīng)學習過的集合有關符號來表示.除此之外,大家還可以發(fā)現(xiàn)什么集合?

  6.第六次看到了什么?

  7.陰影部分的周界是一條封閉曲線,它的內(nèi)部(陰影部分)表示一個新的集合,試問它的元素與集A集B的元素有何關系?

  【注】若同學直接觀察到,第二、三、四次和第五次部分觀察活動可不進行.

  【介紹】這又是由兩個集合產(chǎn)生第三個集合的情形,在今后學習中也經(jīng)常出現(xiàn),它給我們由集A集B并在一起的感覺,稱為集A集B的并.

  【設問】請大家從元素與集合關系仿照交集概念的敘述方法試敘述并集的概念?

  【助學】并集與交集的概念僅一字之差,即將“且”改為“或”.或的含義是集A中的所有元素要取,集B中的所有元素也要取.

  【介紹】集A與集B的并集記作(讀作A并B).

  【助學】符號“ ”形如“碰杯”時的杯子,產(chǎn)生并的感覺,所以開口向上.切記,不要與“ ”混淆,更不能與“ ”等符號混淆.

  觀察.產(chǎn)生興趣.

  答:圖示法表示的集A.

  答:圖示法表示集B.集A集B的公共部分?

  答:公共部分出現(xiàn)陰影.

  傾聽.觀察

  思考.答:該集合中所有元素屬于集合A且屬于集合B.

  傾聽.理解.

  思考.答:由所有屬于集合A且屬于集合B的元素所組成的集合,叫做A與B的交集.

  傾聽.記憶.

  傾聽.興趣記憶.

  思考:“列舉法還是描述法?”答:描述法.

  思考.議論.

  口答結(jié)合板書.

  想象交集的圖示,或回憶交集的概念.

  口答結(jié)合板書:是A的子集.A.是

  B的子集.

  口答結(jié)合板書.

  口答:從一個集合開始,依次用其每個元素與另一個集合中的元素對照,取出相同的元素組成的集合即為所求.

  答:圖示法表示的集A.

  答:集A中子集A交B的補集.

  答:上述區(qū)域出現(xiàn)陰影.

  口答結(jié)合板書

  答:出現(xiàn)陰影.

  口答結(jié)合板書

  認真、仔細、整體的進行觀察、想象.答:表示集A集B的兩條封閉曲線除去表示交集的封閉曲線剩余部分組成一條封閉曲線的內(nèi)部所表示的集合.

  答:出現(xiàn)陰影.

  思考:答:該集合中所有元素屬于集合A或?qū)儆诩螧.

  傾聽,理解.

  回憶交集概念,思考.答:由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A與B的并集.

  傾聽.比較.記憶.

  傾聽,記憶.

  傾聽.興趣記憶.比較記憶,.

  直觀性原則.多媒體助學.

  用直觀、感性的例子為引入交集做鋪墊.

  滲透集合運算意識.

  直觀的感知交集.

  培養(yǎng)從直觀、感性到理性的概括抽象能力.

  解決難點.

  興趣激勵.比較記憶

  培養(yǎng)用描述法表示集合的能力.

  培養(yǎng)想象能力.

  以新代舊.

  突出重點.

  概念遷移為能力.

  進一步培養(yǎng)觀察能力.

  培養(yǎng)觀察能力

  以新代舊.

  培養(yǎng)整體觀察能力.

  培養(yǎng)從直觀、感性到理性的概括抽象能力.

  解決難點.比較記憶.

  興趣激勵,辯易混.比較記憶.

  【設問】集A與集B的并集除上面看到的用圖示法表示外,還可以用我們學習過的哪種方法表示?如何表示?

  【設問】與A有何關系?如何表示?與B有何關系?如何表示?

  【隨練】寫出,的并集.

  【設問】大家是如何寫出的?

  【例1 】設,,求(以下例題用投影儀打出,隨用隨啟).

  【助練】本例實為解不等式組,用數(shù)軸法找出公共部分,寫出即可.

  【例2 】設,

  ,求

  【例3 】設,,求

  【例4 】設,

  ,求

  【助學】數(shù)軸法(略).想象前面集A集B并集的圖示法,類似地,將兩個不等式區(qū)域并到一起,即為所求.其中元素2雖不屬于集A倮屬于集B,所以要取,元素1雖不屬于集B但屬于集A,所以要取,因此,只要將集A的左端點,集B的右端點組成新的不等式區(qū)域即為所求(兩端點取否維持題設條件).

  【助練】以上例題,當理解并較熟練后,且結(jié)果可進一步簡化時,中間一步或兩步可省略.如例4.

  【練習】教材第12頁練習1~5.

  【助練】

  1.全集與其某個子集的交集是哪個集合?

  2.全集與其某個子集的并集是哪個集合?

  3.兩個無公共元素的集合的交集是什么集合?

  4.兩個無公共元素的集合A 、 B,它們的并集如何表示?

  5.任意集合A與其本身的交集、并集分別是什么集合?如何表示?

  6.任意集A與空集的交集、并集分別是什么集合?如何表示?

  7.與的關系如何表示?與的關系如何表示?

  【例5 】設,,求

  【助思】

  1.集A 、集B各是什么集合?

  2.如何理解

  3.本例實為求兩條直線的交點或解二元一次方程組,只不過是從集合的角度提出問題解決問題.

  【例6 】已知A為奇數(shù)集,B為偶數(shù)集,Z為整數(shù)集,求,,,,

  ,

  【助學】

  1.偶數(shù)包括哪些數(shù)?任意偶數(shù)如何表示?偶數(shù)集(全體偶數(shù)的集合)如何表示?

  2.奇數(shù)包括哪些數(shù)?任意奇數(shù)如何表示?奇數(shù)集(全體奇數(shù)的集合?如何表示?)

  【例7 】設,,,求,,,.

  思考:“列舉法還是描述法?”

  答:描述法.

  思考.議論.

  口答結(jié)合板書.

  或

  想象并集的圖示,或回憶并集的概念.

  口答結(jié)合板書:A和B都是的子集.,

  口答結(jié)合板書:

  口答:綜合考慮兩個集合,從最小數(shù)開始,哪個集合的元素都取,一個不能丟,相同元素由集合中元素的互異性只取一次.

  審清題意.筆練結(jié)合板書.

  解:

  傾聽.理解.

  審清題意.口答結(jié)合板書.

  解:

  是直角三角形,且是直角三角形是等腰三角形.

  審清題意.口答結(jié)合板書.

  解:是銳角三角形是鈍角三角形是銳角三角形,或是鈍角三角形是斜三角形.

  審清題意.

  畫數(shù)軸.畫出不等式區(qū)域.傾聽.解:

  傾聽.理解.

  口答結(jié)合筆練和板演.

  思考.答:子集.

  思考.答:全集.

  思考.答:空集

  思考.議論.答:,或

  思考.答:A.,

  思考.答:分別是空集和A.

  ,

  思考.答:

  審清題意.

  思考.議論.答:分別是直線或直線上的點集.或者分別是二元一次方程和二元一次方程的解集.

  思考:答:求這兩條直線的交點,或求這兩個二元一次方程的公共解,即求由這兩個二元一次方程組成的二元一次方程組的解.

  傾聽.理解.掌握.

  解:

  審題中發(fā)現(xiàn)未見過的集合.

  思索.

  答:0,,等.()

  或{偶數(shù)}

  答:,等.()

  或(奇數(shù))

  解:{奇數(shù)} {偶數(shù)}

  {奇數(shù)} Z={奇數(shù)}=A.

  {偶數(shù)} Z={偶數(shù)}=B.

  {奇數(shù)} {偶數(shù)}=Z.

  {奇數(shù)}

  {偶數(shù)}

  審清題意.口答結(jié)合板書.

  解:

  培養(yǎng)用描述法表示集合的能力.

  以新代舊.

  培養(yǎng)想象能力.

  以新代舊.

  突出重點.

  概念遷移為能力.

  突出重點.培養(yǎng)能力.

  落實教學目標

  突出重點.培養(yǎng)能力.

  三、課堂練習

  教材第13頁練習1 、 2 、 3 、 4.

  【助練習】第13頁練習4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:

  凡有陰影部分即為所求.

  【講解】看圖,所得結(jié)果實際上還可以看作全集U中子集的補集則有第13頁練習4(2)仿上,如圖,凡有雙向陰影部分即為所求.

  【講解】看圖,所得結(jié)果實際上還可以看作全集U中子集的補集.則有:以上兩個等式稱反演律.簡記為“先補后并等于先交后補”和“先補后交等于先并后補”.反演律在今后類似問題中給我們帶來方便,因為它將三步工作簡化為兩步工作.

  四、小結(jié)

  提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.

  五、作業(yè)

  習題1至8.

  筆練結(jié)合板書.

  傾聽.修改練習.掌握方法.

  觀察.思考.傾聽.理解.記憶.

  傾聽.理解.記憶.

  回憶、再現(xiàn)學習內(nèi)容.

  落實教學目標

  介紹解題技能技巧.

  學習內(nèi)容條理化.

  課堂教學設計說明

  1.本教學設計方案除繼續(xù)遵循“集合”方案中的“主體教學思想”外,著力研究直觀性原則在教學中的應用及多媒體(投影儀)的助學作用.

  2.反演律可根據(jù)學生實際酌情使用.

高一數(shù)學教案11

  [三維目標]

  一、知識與技能:

  1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關系

  2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學解題的一般思想

  3、了解集合元素個數(shù)問題的討論說明

  二、過程與方法

  通過提問匯總練習提煉的'形式來發(fā)掘?qū)W生學習方法

  三、情感態(tài)度與價值觀

  培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維

  [教學重點、難點]:會正確應用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀

  [教學方法]:講練結(jié)合法

  [授課類型]:復習課

  [課時安排]:1課時

  [教學過程]:集合部分匯總

  本單元主要介紹了以下三個問題:

  1,集合的含義與特征

  2,集合的表示與轉(zhuǎn)化

  3,集合的基本運算

  一,集合的含義與表示(含分類)

  1,具有共同特征的對象的全體,稱一個集合

  2,集合按元素的個數(shù)分為:有限集和無窮集兩類

高一數(shù)學教案12

  1、知識與技能

  (1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);

  (2)理解任意角的三角函數(shù)不同的定義方法;

  (3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;

  (4)掌握并能初步運用公式一;

  (5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).

  2、過程與方法

  初中學過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數(shù).講解例題,總結(jié)方法,鞏固練習.

  3、情態(tài)與價值

  任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的'終邊上點的坐標的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導學生從自己已有認知基礎出發(fā)學習三角函數(shù),但它對準確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學生對三角函數(shù)概念的理解.

  本節(jié)利用單位圓上點的坐標定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應關系,也表明了這兩個函數(shù)之間的關系.

  教學重難點

  重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).

  難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.

高一數(shù)學教案13

  學習目標:

  (1)理解函數(shù)的概念

  (2)會用集合與對應語言來刻畫函數(shù),

  (3)了解構(gòu)成函數(shù)的要素。

  重點:

  函數(shù)概念的理解

  難點

  函數(shù)符號y=f(x)的理解

  知識梳理:

  自學課本P29—P31,填充以下空格。

  1、設集合A是一個非空的實數(shù)集,對于A內(nèi) ,按照確定的對應法則f,都有 與它對應,則這種對應關系叫做集合A上的一個函數(shù),記作 。

  2、對函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個函數(shù)的 ,所有函數(shù)值的集合 叫做這個函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫為 。

  3、因為函數(shù)的值域被 完全確定,所以確定一個函數(shù)只需要

  。

  4、依函數(shù)定義,要檢驗兩個給定的變量之間是否存在函數(shù)關系,只要檢驗:

 、 ;② 。

  5、設a, b是兩個實數(shù),且a

  (1)滿足不等式 的實數(shù)x的集合叫做閉區(qū)間,記作 。

  (2)滿足不等式a

  (3)滿足不等式 或 的實數(shù)x的集合叫做半開半閉區(qū)間,分別表示為 ;

  分別滿足x≥a,x>a,x≤a,x

  其中實數(shù)a, b表示區(qū)間的兩端點。

  完成課本P33,練習A 1、2;練習B 1、2、3。

  例題解析

  題型一:函數(shù)的概念

  例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( )

  練習:設M={x| },N={y| },給出下列四個圖像,其中能表示從集合M到集合N的函數(shù)關系的有____個。

  題型二:相同函數(shù)的判斷問題

  例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與

 、 與 其中表示同一函數(shù)的是( )

  A. ② ③ B. ② ④ C. ① ④ D. ④

  練習:已知下列四組函數(shù),表示同一函數(shù)的是( )

  A. 和 B. 和

  C. 和 D. 和

  題型三:函數(shù)的定義域和值域問題

  例3:求函數(shù)f(x)= 的定義域

  練習:課本P33練習A組 4.

  例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。

  當堂檢測

  1、下列各組函數(shù)中,表示同一個函數(shù)的.是( A )

  A、 B、

  C、 D、

  2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( C )

  A、5 B、-5 C、6 D、-6

  3、給出下列四個命題:

 、 函數(shù)就是兩個數(shù)集之間的對應關系;

 、 若函數(shù)的定義域只含有一個元素,則值域也只含有一個元素;

 、 因為 的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);

 、 定義域和對應關系確定后,函數(shù)的值域也就確定了.

  其中正確的有( B )

  A. 1 個 B. 2 個 C. 3個 D. 4 個

  4、下列函數(shù)完全相同的是 ( D )

  A. , B. ,

  C. , D. ,

  5、在下列四個圖形中,不能表示函數(shù)的圖象的是 ( B )

  6、設 ,則 等于 ( D )

  A. B. C. 1 D.0

  7、已知函數(shù) ,求 的值.( )

高一數(shù)學教案14

  本文題目:高一數(shù)學教案:函數(shù)的奇偶性

  課題:1.3.2函數(shù)的奇偶性

  一、三維目標:

  知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。

  過程與方法:通過設置問題情境培養(yǎng)學生判斷、推斷的能力。

  情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操. 通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養(yǎng)學生善于探索的思維品質(zhì)。

  二、學習重、難點:

  重點:函數(shù)的奇偶性的概念。

  難點:函數(shù)奇偶性的判斷。

  三、學法指導:

  學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結(jié)合的方式進行處理,使學生邊學邊練,及時鞏固。

  四、知識鏈接:

  1.復習在初中學習的軸對稱圖形和中心對稱圖形的定義:

  2.分別畫出函數(shù)f (x) =x3與g (x) = x2的`圖象,并說出圖象的對稱性。

  五、學習過程:

  函數(shù)的奇偶性:

  (1)對于函數(shù) ,其定義域關于原點對稱:

  如果______________________________________,那么函數(shù) 為奇函數(shù);

  如果______________________________________,那么函數(shù) 為偶函數(shù)。

  (2)奇函數(shù)的圖象關于__________對稱,偶函數(shù)的圖象關于_________對稱。

  (3)奇函數(shù)在對稱區(qū)間的增減性 ;偶函數(shù)在對稱區(qū)間的增減性 。

  六、達標訓練:

  A1、判斷下列函數(shù)的奇偶性。

  (1)f(x)=x4;(2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .

  B3、已知 ,其中 為常數(shù),若 ,則

  _______ .

  B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關于 ( )

  (A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對

  B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .

  C6、若函數(shù) 是定義在R上的奇函數(shù),且當 時, ,那么當

  時, =_______ .

  D7、設 是 上的奇函數(shù), ,當 時, ,則 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .

  七、學習小結(jié):

  本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關于原點對稱。單調(diào)性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì)。

  八、課后反思:

高一數(shù)學教案15

  教學目標

  (1)正確理解充分條件、必要條件和充要條件的概念;

 。2)能正確判斷是充分條件、必要條件還是充要條件;

 。3)培養(yǎng)學生的邏輯思維能力及歸納總結(jié)能力;

  (4)在充要條件的教學中,培養(yǎng)等價轉(zhuǎn)化思想.

  教學建議

 。ㄒ唬┙滩姆治

  1.知識結(jié)構(gòu)

  首先給出推斷符號“”,并引出的意義,在此基礎上講述了充要條件的初步知識.

  2.重點難點分析

  本節(jié)的重點與難點是關于充要條件的判斷.

 。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學概念,主要用來區(qū)分命題的條件和結(jié)論之間的因果關系.

 。2)在判斷條件和結(jié)論之間的因果關系中應該:

 、偈紫确智鍡l件是什么,結(jié)論是什么;

 、谌缓髧L試用條件推結(jié)論,再嘗試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;

  ③最后再指出條件是結(jié)論的什么條件.

 。3)在討論條件和條件的關系時,要注意:

 、偃,但,則是的充分但不必要條件;

 、谌簦,則是的必要但不充分條件;

 、廴,且,則是的充要條件;

 、苋簦,則是的充要條件;

  ⑤若,且,則是的既不充分也不必要條件.

 。4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識,有助于充要條件的理解和判斷.

 、偃,則是的充分條件;

  顯然,要使元素,只需就夠了.類似地還有:

  ②若,則是的必要條件;

  ③若,則是的充要條件;

 、苋,且,則是的既不必要也不充分條件.

 。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當我們證明某一命題有困難時,可以證明該命題的逆否命題成立,從而得出原命題成立.

  (二)教法建議

  1.學習充分條件、必要條件和充要條件知識,要注意與前面有關邏輯初步知識內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的語句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復合命題.

  2.由于這節(jié)課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發(fā)學生的學習興趣是關鍵.教學中始終要注意以學生為主,讓學生在自我思考、相互交流中去結(jié)概念“下定義”,去體會概念的本質(zhì)屬性.

  3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結(jié)論來說,是否充分,從而引入“充分條件”的概念,進而引入“必要條件”的概念.

  4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關系來認識“充分條件”的概念,從互為逆否命題的等價性來引出“必要條件”的概念.

  教學設計示例

  充要條件

  教學目標

 。1)正確理解充分條件、必要條件和充要條件的概念;

 。2)能正確判斷是充分條件、必要條件還是充要條件;

 。3)培養(yǎng)學生的邏輯思維能力及歸納總結(jié)能力;

 。4)在充要條件的教學中,培養(yǎng)等價轉(zhuǎn)化思想.

  教學重點難點:

  關于充要條件的判斷

  教學用具:

  幻燈機或?qū)嵨锿队皟x

  教學過程設計

  1.復習引入

  練習:判斷下列命題是真命題還是假命題(用幻燈投影):

  (1)若,則;

 。2)若,則;

 。3)全等三角形的面積相等;

 。4)對角線互相垂直的四邊形是菱形;

 。5)若,則;

  (6)若方程有兩個不等的實數(shù)解,則.

  (學生口答,教師板書.)

 。1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.

  置疑:對于命題“若,則”,有時是真命題,有時是假命題.如何判斷其真假的?

  答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.

  對于命題“若,則”,如果由經(jīng)過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結(jié)論的成立,這時我們稱條件是成立的充分條件,記作.

  2.講授新課

 。ò鍟浞謼l件的定義.)

  一般地,如果已知,那么我們就說是成立的充分條件.

  提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關系.

 。▽W生口答)

 。1)“,”是“”成立的充分條件;

 。2)“三角形全等”是“三角形面積相等”成立的充分條件;

  (3)“方程的有兩個不等的實數(shù)解”是“”成立的充分條件.

  從另一個角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.

  (板書必要條件的`定義.)

  提出問題:用“充分條件”和“必要條件”來敘述上述6個命題.

 。▽W生口答).

 。1)因為,所以是的充分條件,是的必要條件;

  (2)因為,所以是的必要條件,是的充分條件;

 。3)因為“兩三角形全等”“兩三角形面積相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;

 。4)因為“四邊形的對角線互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;

  (5)因為,所以是的必要條件,是的充分條件;

 。6)因為“方程的有兩個不等的實根”“”,而且“方程的有兩個不等的實根”“”,所以“方程的有兩個不等的實根”是“”充分條件,而且是必要條件.

  總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.

 。ò鍟湟獥l件的定義.)

  3.鞏固新課

  例1(用投影儀投影.)

  (學生活動,教師引導學生作出下面回答.)

 、僖驗橛欣頂(shù)一定是實數(shù),但實數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;

 、谝欢芡瞥,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;

  ③、是奇數(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;

  ④表示或,所以是成立的必要非充分條件;

 、萦山患亩x可知且是成立的充要條件;

 、抻芍,所以是成立的充分非必要條件;

 、哂芍颍允,成立的必要非充分條件;

 、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;

  (通過對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認識.)

  例2已知是的充要條件,是的必要條件同時又是的充分條件,試與的關系.(投影)

  解:由已知得,

  所以是的充分條件,或是的必要條件.

  4.小結(jié)回授

  今天我們學習了充分條件、必要條件和充要條件的概念,并學會了判斷條件A是B的什么條件,這為我們今后解決數(shù)學問題打下了等價轉(zhuǎn)化的基礎.

  課內(nèi)練習:課本(人教版,試驗修訂本,第一冊(上))第35頁練習l、2;第36頁練習l、2.

 。ㄍㄟ^練習,檢查學生掌握情況,有針對性的進行講評.)

  5.課外作業(yè):教材第36頁 習題1.8 1、2、3.

【高一數(shù)學教案】相關文章:

高一數(shù)學教案12-09

高一優(yōu)秀數(shù)學教案12-22

高一上冊的數(shù)學教案02-14

高一數(shù)學教案15篇02-24

小學數(shù)學教案小學數(shù)學教案范文10-30

(經(jīng)典)小學數(shù)學教案08-07

關于數(shù)學教案03-28

數(shù)學教案模板11-29

初中數(shù)學教案10-07