- 排列組合高中教案 推薦度:
- 相關(guān)推薦
排列組合教案
作為一名優(yōu)秀的教育工作者,時(shí)常需要用到教案,借助教案可以更好地組織教學(xué)活動(dòng)。教案應(yīng)該怎么寫呢?下面是小編幫大家整理的排列組合教案,僅供參考,大家一起來看看吧。
排列組合教案1
一、課標(biāo)要求:
1.分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理
通過實(shí)例,總結(jié)出分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理;能根據(jù)具體問題的特征,選擇分類加法計(jì)數(shù)原理或分步乘法計(jì)數(shù)原理解決一些簡單的實(shí)際問題;
2.排列與組合
通過實(shí)例,理解排列、組合的概念;能利用計(jì)數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式,并能解決簡單的實(shí)際問題;
3.二項(xiàng)式定理
能用計(jì)數(shù)原理證明二項(xiàng)式定理;會(huì)用二項(xiàng)式定理解決與二項(xiàng)展開式有關(guān)的簡單問題。
二、命題走向
本部分內(nèi)容主要包括分類計(jì)數(shù)原理、分步計(jì)數(shù)原理、排列與組合、二項(xiàng)式定理三部分;考查內(nèi)容:(1)兩個(gè)原理;(2)排列、組合的概念,排列數(shù)和組合數(shù)公式,排列和組合的應(yīng)用;(3)二項(xiàng)式定理,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)及二項(xiàng)式系數(shù)和。
排列、組合不僅是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,而且在實(shí)際中有廣泛的應(yīng)用,因此新高考會(huì)有題目涉及;二項(xiàng)式定理是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,也是高考每年必考內(nèi)容,新高考會(huì)繼續(xù)考察。
考察形式:單獨(dú)的考題會(huì)以選擇題、填空題的形式出現(xiàn),屬于中低難度的題目,排列組合有時(shí)與概率結(jié)合出現(xiàn)在解答題中難度較小,屬于高考題中的中低檔題目。
三、要點(diǎn)精講
1.排列、組合、二項(xiàng)式知識相互關(guān)系表
2.兩個(gè)基本原理
。1)分類計(jì)數(shù)原理中的分類;
。2)分步計(jì)數(shù)原理中的分步;
正確地分類與分步是學(xué)好這一章的關(guān)鍵。
3.排列
。1)排列定義,排列數(shù)
。2)排列數(shù)公式:系= =n·(n-1)…(n-m+1);
(3)全排列列:=n!;
(4)記住下列幾個(gè)階乘數(shù):1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;
4.組合
。1)組合的定義,排列與組合的區(qū)別;
。2)組合數(shù)公式:Cnm= =;
(3)組合數(shù)的性質(zhì)
、貱nm=Cnn-m;②;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;
5.二項(xiàng)式定理
(1)二項(xiàng)式展開公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;
。2)通項(xiàng)公式:二項(xiàng)式展開式中第k+1項(xiàng)的通項(xiàng)公式是:Tk+1=Cnkan-kbk;
6.二項(xiàng)式的應(yīng)用
。1)求某些多項(xiàng)式系數(shù)的和;
(2)證明一些簡單的組合恒等式;
。3)證明整除性。①求數(shù)的末位;②數(shù)的整除性及求系數(shù);③簡單多項(xiàng)式的整除問題;
(4)近似計(jì)算。當(dāng)|x|充分小時(shí),我們常用下列公式估計(jì)近似值:
、(1+x)n≈1+nx;②(1+x)n≈1+nx+ x2;(5)證明不等式。
四、典例解析
題型1:計(jì)數(shù)原理
例1.完成下列選擇題與填空題
(1)有三個(gè)不同的信箱,今有四封不同的信欲投其中,則不同的投法有種。
A.81 B.64 C.24 D.4
(2)四名學(xué)生爭奪三項(xiàng)冠軍,獲得冠軍的可能的種數(shù)是()
A.81 B.64 C.24 D.4
。3)有四位學(xué)生參加三項(xiàng)不同的競賽,①每位學(xué)生必須參加一項(xiàng)競賽,則有不同的參賽方法有;
、诿宽(xiàng)競賽只許有一位學(xué)生參加,則有不同的參賽方法有;
③每位學(xué)生最多參加一項(xiàng)競賽,每項(xiàng)競賽只許有一位學(xué)生參加,則不同的參賽方法有。
例2.(06江蘇卷)今有2個(gè)紅球、3個(gè)黃球、4個(gè)白球,同色球不加以區(qū)分,將這9個(gè)球排成一列有種不同的方法(用數(shù)字作答)。
點(diǎn)評:分步計(jì)數(shù)原理與分類計(jì)數(shù)原理是排列組合中解決問題的重要手段,也是基礎(chǔ)方法,在高中數(shù)學(xué)中,只有這兩個(gè)原理,尤其是分類計(jì)數(shù)原理與分類討論有很多相通之處,當(dāng)遇到比較復(fù)雜的問題時(shí),用分類的方法可以有效的將之化簡,達(dá)到求解的目的.。
題型2:排列問題
例3.(1)(20xx四川理卷13)展開式中的系數(shù)為?______ _________。
【點(diǎn)評】:此題重點(diǎn)考察二項(xiàng)展開式中指定項(xiàng)的系數(shù),以及組合思想;
。2).20xx湖南省長沙云帆實(shí)驗(yàn)學(xué)校理科限時(shí)訓(xùn)練
若n展開式中含項(xiàng)的系數(shù)與含項(xiàng)的系數(shù)之比為-5,則n等于()
A.4 B.6 C.8 D.10
點(diǎn)評:合理的應(yīng)用排列的公式處理實(shí)際問題,首先應(yīng)該進(jìn)入排列問題的情景,想清楚我處理時(shí)應(yīng)該如何去做。
例4.(1)用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字的五位數(shù),則其中數(shù)字1,2相鄰的偶數(shù)有個(gè)(用數(shù)字作答);
。2)電視臺連續(xù)播放6個(gè)廣告,其中含4個(gè)不同的商業(yè)廣告和2個(gè)不同的公益廣告,要求首尾必須播放公益廣告,則共有種不同的播放方式(結(jié)果用數(shù)值表示).
點(diǎn)評:排列問題不可能解決所有問題,對于較復(fù)雜的問題都是以排列公式為輔助。
題型三:組合問題
例5.荊州市20xx屆高中畢業(yè)班質(zhì)量檢測(Ⅱ)
(1)將4個(gè)相同的白球和5個(gè)相同的黑球全部放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,又要有黑球,且每個(gè)盒子中都不能同時(shí)只放入2個(gè)白球和2個(gè)黑球,則所有不同的放法種數(shù)為(C)A.3 B.6 C.12 D.18
。2)將4個(gè)顏色互不相同的球全部放入編號為1和2的兩個(gè)盒子里,使得放入每個(gè)盒子里的球的個(gè)數(shù)不小于該盒子的編號,則不同的放球方法有()
A.10種B.20種C.36種D.52種
點(diǎn)評:計(jì)數(shù)原理是解決較為復(fù)雜的排列組合問題的基礎(chǔ),應(yīng)用計(jì)數(shù)原理結(jié)合
例6.(1)某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,則不同的選派方案共有種;
。2)5名志愿者分到3所學(xué)校支教,每個(gè)學(xué)校至少去一名志愿者,則不同的分派方法共有()
。ˋ)150種(B)180種(C)200種(D)280種
點(diǎn)評:排列組合的交叉使用可以處理一些復(fù)雜問題,諸如分組問題等;
題型4:排列、組合的綜合問題
例7.平面上給定10個(gè)點(diǎn),任意三點(diǎn)不共線,由這10個(gè)點(diǎn)確定的直線中,無三條直線交于同一點(diǎn)(除原10點(diǎn)外),無兩條直線互相平行。求:(1)這些直線所交成的點(diǎn)的個(gè)數(shù)(除原10點(diǎn)外)。(2)這些直線交成多少個(gè)三角形。
點(diǎn)評:用排列、組合解決有關(guān)幾何計(jì)算問題,除了應(yīng)用排列、組合的各種方法與對策之外,還要考慮實(shí)際幾何意義。
例8.已知直線ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個(gè)不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數(shù)。
點(diǎn)評:本題是1999年全國高中數(shù)學(xué)聯(lián)賽中的一填空題,據(jù)抽樣分析正確率只有0.37。錯(cuò)誤原因沒有對c=0與c≠0正確分類;沒有考慮c=0中出現(xiàn)重復(fù)的直線。
題型5:二項(xiàng)式定理
例9.(1)(20xx湖北卷)
在的展開式中,的冪的指數(shù)是整數(shù)的項(xiàng)共有
A.3項(xiàng)B.4項(xiàng)C.5項(xiàng)D.6項(xiàng)
。2)的展開式中含x的正整數(shù)指數(shù)冪的項(xiàng)數(shù)是
。ˋ)0(B)2(C)4(D)6
點(diǎn)評:多項(xiàng)式乘法的進(jìn)位規(guī)則。在求系數(shù)過程中,盡量先化簡,降底數(shù)的運(yùn)算級別,盡量化成加減運(yùn)算,在運(yùn)算過程可以適當(dāng)注意令值法的運(yùn)用,例如求常數(shù)項(xiàng),可令.在二項(xiàng)式的展開式中,要注意項(xiàng)的系數(shù)和二項(xiàng)式系數(shù)的區(qū)別。
例10.(20xx湖南文13)
記的展開式中第m項(xiàng)的系數(shù)為,若,則=____5______.
題型6:二項(xiàng)式定理的應(yīng)用
例11.(1)求4×6n+5n+1被20除后的余數(shù);
。2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余數(shù)是多少?
。3)根據(jù)下列要求的精確度,求1.025的近似值。①精確到0.01;②精確到0.001。
點(diǎn)評:(1)用二項(xiàng)式定理來處理余數(shù)問題或整除問題時(shí),通常把底數(shù)適當(dāng)?shù)夭鸪蓛身?xiàng)之和或之差再按二項(xiàng)式定理展開推得所求結(jié)論;
。2)用二項(xiàng)式定理來求近似值,可以根據(jù)不同精確度來確定應(yīng)該取到展開式的第幾項(xiàng)。
五、思維總結(jié)
解排列組合應(yīng)用題的基本規(guī)律
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理使用方法有兩種:①單獨(dú)使用;②聯(lián)合使用。
2.將具體問題抽象為排列問題或組合問題,是解排列組合應(yīng)用題的關(guān)鍵一步。
3.對于帶限制條件的排列問題,通常從以下三種途徑考慮:
。1)元素分析法:先考慮特殊元素要求,再考慮其他元素;
。2)位置分析法:先考慮特殊位置的要求,再考慮其他位置;
。3)整體排除法:先算出不帶限制條件的排列數(shù),再減去不滿足限制條件的排列數(shù)。
4.對解組合問題,應(yīng)注意以下三點(diǎn):
(1)對“組合數(shù)”恰當(dāng)?shù)姆诸愑?jì)算,是解組合題的常用方法;
。2)是用“直接法”還是“間接法”解組合題,其原則是“正難則反”;
(3)設(shè)計(jì)“分組方案”是解組合題的關(guān)鍵所在。
排列組合教案2
教學(xué)內(nèi)容:
簡單的排列組合
教學(xué)目標(biāo):
1.使學(xué)生通過觀察、猜測、實(shí)驗(yàn)、驗(yàn)證等活動(dòng),找出簡單事件的排列數(shù)或組合數(shù)。
2.培養(yǎng)學(xué)生有序地、全面地思考問題的意識和習(xí)慣。
教學(xué)過程:
1.借助操作活動(dòng)或?qū)W生易于理解的事例來幫助學(xué)生找出組合數(shù)。師生共同分析練習(xí)二十五第1題。讓學(xué)生小組討論,充分發(fā)表自己的意見。
2.利用直觀圖示幫助學(xué)生有序地、不重不漏地找出早餐搭配的組合數(shù)。
3、出示練習(xí)二十五第3題。
學(xué)生看題后,四人小組討論出有多少種求組合數(shù)的方法。
4、學(xué)生匯報(bào)。
。1)圖示表示法(兩種)。引導(dǎo)學(xué)生用畫簡圖的方式來表示抽象的數(shù)學(xué)知識。
(2)其他的'方法,例如聰聰或明明分別可以和每一個(gè)小朋友合影(分步時(shí),可以把確定聰聰作為第一步,也可以把確定明明作為第一步),教學(xué)時(shí)充分發(fā)揮學(xué)生的創(chuàng)造性。至于學(xué)生用哪種方法求出來,都沒關(guān)系。但要引導(dǎo)學(xué)生思考如何才能不重不漏,發(fā)展學(xué)生有序地思考問題的意識和能力。
。3)學(xué)生自己用圖示表示時(shí),可以很開放,比如,可以用正方形表示聰聰,圓形表示明明,并分別在正方形和圓形里標(biāo)上序號。實(shí)際這是發(fā)展學(xué)生用數(shù)學(xué)化的符號表示具體事件的能力的一個(gè)體現(xiàn)。
。4)如果學(xué)生用簡圖的方式來表示有困難,也可以讓學(xué)生回憶一下二年級上冊的例子或借助學(xué)具卡片擺一擺。
2.“做一做”
(1)練習(xí)二十五第7題。
通過活動(dòng)的方式讓學(xué)生不重不漏地把所有取錢的情況寫出來。
。2)練習(xí)二十五第9題。
用兩種圖示法表示兩兩組合的方式(比較簡單的兩種方式)。在教學(xué)中也要允許有的學(xué)生把所有的情況逐一羅列出來,只要他通過自己的方法探索出所有的組合數(shù),都是應(yīng)該鼓勵(lì)的。
排列組合教案3
教學(xué)內(nèi)容背景材料:
義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教版)二年級上冊第八單元的排列與組合
教學(xué)目標(biāo):
1、通過觀察、猜測、操作等活動(dòng),找出最簡單的事物的排列數(shù)和組合數(shù)。
2、經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。
3、培養(yǎng)學(xué)生有序地全面地思考問題的意識。
4、感受數(shù)學(xué)與生活的緊密聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和用數(shù)學(xué)方法解決問題的意識。
教學(xué)重點(diǎn):
經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。
教學(xué)難點(diǎn):
初步理解簡單事物排列與組合的不同。
教具準(zhǔn)備:
乒乓球、衣服圖片、紙箱、每組三張數(shù)字卡片、吹塑紙數(shù)字卡片。
一、情境導(dǎo)入,展開教學(xué)
今天,王老師要帶大家去“數(shù)學(xué)廣角”里做游戲,可是,我把游戲要用的材料都放在這個(gè)密碼包里。你們想解開密碼取出游戲材料嗎?(想)我給大家提供解碼的3個(gè)信息。
1.好,接下來老師提供解碼的第一個(gè)信息:密碼是一個(gè)兩位數(shù)。(學(xué)生在兩位數(shù)里猜)(你們猜的對不對呢?請聽第二個(gè)解碼信息)
2.下面,提供解碼的第二個(gè)信息:密碼是由2和7組成的(學(xué)生說出27和72)。能說說看你是怎么想的嗎?
3.下面,提供解碼的第三個(gè)信息:剛才說了密碼可能是27也可能是72。其實(shí)這個(gè)密碼和老師的年齡有關(guān)。哪個(gè)才是真正的密碼是?(學(xué)生說出是27)到底是不是27呢?請看(教師出示密碼)。真的是27,恭喜大家解碼成功!
二、多種活動(dòng),體驗(yàn)新知
1、感知排列
師:請小朋友先到“數(shù)字宮”做個(gè)排數(shù)字游戲,好嗎?這有兩張數(shù)字卡片(1 、2)(老師從密碼包里拿出),你能擺出幾個(gè)兩位數(shù)?(用數(shù)字卡擺一擺)
生:我擺了兩個(gè)不同的數(shù)字12和21。(教師板書)
師:同學(xué)們想得真好。我又請來了一位好朋友數(shù)字3,現(xiàn)在有三個(gè)數(shù)字1、2、3,讓大家寫兩位數(shù),你們不會(huì)了吧?(會(huì))別吹牛。ㄕ娴臅(huì))好,下面大家分組合作,組長記錄?纯茨銈兡軌?qū)懗鰩讉(gè)不同的兩位數(shù),注意不要重復(fù),如果你覺得直接寫有困難的話可以借助手中的數(shù)字卡片擺一擺。好,開始。
學(xué)生活動(dòng)教師巡視并參與學(xué)生活動(dòng)。(學(xué)生所寫的個(gè)數(shù)可能不一樣,有多有少,找?guī)追葜貜?fù)的'或個(gè)數(shù)少的展示。)哪組同學(xué)來給大家匯報(bào)一下。(教師板書結(jié)果。)有沒有需要補(bǔ)充的呀?
2、探討排列方法。
有的小組擺出4個(gè)不同的兩位數(shù),有的小組擺出6個(gè)不同的兩位數(shù),有什么好的方法能保證既不重復(fù),也不漏掉數(shù)呢?還請大家分組討論?匆豢茨慕M同學(xué)的方法最好。ㄐ〗M討論,分組交流,學(xué)生總結(jié)方法。)哪組同學(xué)來給大家匯報(bào)一下你們的想法?
方法1:我擺出12,然后再顛倒就是21,再擺23,顛倒后就是32,再擺13,顛倒后就是31,一共可以擺出6個(gè)兩位數(shù)。
方法2:我先把數(shù)字1放在十位上,然后把數(shù)字2和3分別放在個(gè)位組成12和13;我再把數(shù)字2放在十位上,然后把數(shù)字1和3分別放在個(gè)位組成21和23;我再把數(shù)字3放在十位上,然后把數(shù)字1和2分別放在個(gè)位上組成31和32,一共擺出了6個(gè)兩位數(shù)。
3、老師和學(xué)生共同評議方法:讓學(xué)生選擇自己喜歡的方法再擺一擺,學(xué)生試著總結(jié)。(如果學(xué)生說不出方法2,老師就直接告訴學(xué)生)
3、感知組合。
師:你們真是一群善于動(dòng)腦的好孩子。來,咱們握握手,祝賀祝賀!加油!
排列組合教案4
數(shù)學(xué)廣角是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書二年級上冊開始新增設(shè)的一個(gè)單元,是新教材在向?qū)W生滲透數(shù)學(xué)思想方法方面做出的新嘗試。本課內(nèi)容重在向?qū)W生滲透簡單的排列組合的數(shù)學(xué)思想方法,并初步培養(yǎng)學(xué)生有順序地、全面地思考問題的意識。排列組合的思想方法不僅應(yīng)用廣泛,而且是高年級學(xué)習(xí)概率統(tǒng)計(jì)知識的基礎(chǔ),同時(shí)也是發(fā)展學(xué)生抽象能力和邏輯思維能力的好素材。
本課內(nèi)容是學(xué)生在小學(xué)階段初次接觸有關(guān)排列組合的知識,但是在日常生活中,有很多事情是用排列組合來解決的,如:衣服的搭配、路線選擇等等,作為二年級的學(xué)生,已經(jīng)有了一定的生活經(jīng)驗(yàn),因此在學(xué)習(xí)中安排生動(dòng)有趣的活動(dòng)幫助學(xué)生感知排列組合的知識。
教必有法而教無定法,只有方法得當(dāng),才會(huì)有效。根據(jù)本課教學(xué)內(nèi)容的特點(diǎn)和學(xué)生的思維特點(diǎn),我采用情境教學(xué)法、操作發(fā)現(xiàn)法、直觀演示的教學(xué)方法。為使學(xué)生能夠有效地學(xué)習(xí),主動(dòng)的建構(gòu)知識。我采用合作交流法、動(dòng)手操作法、自主探究的學(xué)習(xí)方法,讓學(xué)生在一系列活動(dòng)中感知排列組合。旨在凸顯三模小組化的教學(xué)模式,從根本上改變傳統(tǒng)教育重教師教輕學(xué)生學(xué)的做法,突出學(xué)生的主體地位,培養(yǎng)學(xué)生自主學(xué)習(xí)能力。讓學(xué)生去自學(xué)、去嘗試、去探究、去發(fā)現(xiàn)、去解決。在課堂教學(xué)中,實(shí)現(xiàn)了以下三種轉(zhuǎn)變:創(chuàng)境引題變說出為引入;先學(xué)后教變被動(dòng)為主動(dòng);展示反饋?zhàn)儗W(xué)會(huì)為會(huì)學(xué)。
教學(xué)過程設(shè)計(jì):
(一)創(chuàng)境引題變說出為引入
藍(lán)貓是學(xué)生喜歡的形象,本課我設(shè)計(jì)了藍(lán)貓帶大家去數(shù)學(xué)廣角游玩的情境并貫穿全課。
談話導(dǎo)入:小朋友,今天藍(lán)貓要帶我們一起到數(shù)學(xué)廣角參觀,你們高興嗎?哎,快看,數(shù)學(xué)廣角的大門是有密碼鎖的,要進(jìn)去必須得到密碼才行。這時(shí)有學(xué)生可能會(huì)發(fā)出疑問或者提出問題:密碼是幾位數(shù)啊?密碼符合什么條件啊?。藍(lán)貓告訴大家:密碼是1和2組成的兩位數(shù),學(xué)生很快就找出了答案:12或21,但不能確定是哪個(gè),同學(xué)們,密碼是10-20之間,學(xué)生判斷出是12。我對判斷出是12的學(xué)生進(jìn)行表揚(yáng)和獎(jiǎng)勵(lì),讓他們一開始上課就獲得了成功的體驗(yàn)。這樣設(shè)計(jì)調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,營造了活躍的課堂氣氛,又在破譯密碼的過程中,滲透了簡單的排列知識,為新課的學(xué)習(xí)做了良好的鋪墊。
。ǘ┫葘W(xué)后教變被動(dòng)為主動(dòng)
1、小組合作學(xué)習(xí)探究用1、2、3能組成幾個(gè)不同的兩位數(shù),感知排列知識。
首先出示導(dǎo)學(xué)案簡潔明了,為學(xué)生合作學(xué)習(xí)指明了方向,讓學(xué)生結(jié)合導(dǎo)學(xué)案先學(xué)。這時(shí)學(xué)生小組合作拿出數(shù)字卡片,在小組內(nèi)擺一擺、寫一寫、說一說,并記錄下結(jié)果。給學(xué)生一個(gè)自主學(xué)習(xí)的空間,教師在輔導(dǎo)過程中能夠了解學(xué)生的學(xué)習(xí)情況,為后面的交流展示做好準(zhǔn)備。而我則重點(diǎn)指導(dǎo)學(xué)生要邊擺邊說,培養(yǎng)學(xué)生動(dòng)手操作、動(dòng)口表達(dá)、動(dòng)腦思考的有機(jī)結(jié)合。接著鼓勵(lì)學(xué)生小組一起上臺展示,在展示時(shí),有的學(xué)生講,有的學(xué)生寫,其他成員補(bǔ)充,這樣體現(xiàn)了小組合作的重要性。教師故意選擇了三個(gè)不同方法的小組展示,根據(jù)學(xué)生的交流匯報(bào)板書三種情況:(1)固定排頭的方法12、13、21、23、31、32;
(2)固定排尾的方法21、31、12、32、13、23;
。3)個(gè)位十位交換位置的方法12、21、13、31、23、32。通過對比交流,發(fā)現(xiàn)既不重復(fù)也不遺漏的應(yīng)該是6個(gè),我接著追問:怎樣才能做到即不重復(fù)、又不遺漏的寫出這6個(gè)數(shù)呢?這時(shí)學(xué)生各抒己見,說出自己的好辦法,我對學(xué)生的方法加以肯定并表揚(yáng):你們的方法真好,我們只要按照一定的順序去寫,就不會(huì)重復(fù)和遺漏了,并將其概括為:有序列舉,這是一次數(shù)學(xué)思想方法的滲透,也是本課教學(xué)的重點(diǎn)。為了突破出這個(gè)教學(xué)重點(diǎn)并讓學(xué)生充分感受有序列舉的好處,我接著讓學(xué)生觀察這三種方法,說一說你喜歡哪一種?為什么?通過學(xué)生的敘述加深了學(xué)生對有序列舉的感受。
讓學(xué)生在交流中互相學(xué)習(xí),思維碰撞產(chǎn)生新的火花,發(fā)散學(xué)生思維,效果不同凡響。使學(xué)生了解不同的方法,把不同的排列進(jìn)行對比,克服學(xué)生思維定式,有利于學(xué)生從多角度理解排列知識,從而深刻理解排列的內(nèi)涵,揭示排列的本質(zhì),使學(xué)生對數(shù)字的排列有了一個(gè)更高層次的認(rèn)識。讓學(xué)生當(dāng)小老師上臺展示交流,既可以鍛煉這部分學(xué)生的'膽量,又借學(xué)生之口來講解老師要講的內(nèi)容,臺下學(xué)生聽得更認(rèn)真,同時(shí)能讓老師站在學(xué)生的角度觀察思考,進(jìn)而進(jìn)行查漏補(bǔ)缺,釋疑解惑,重點(diǎn)講解,難點(diǎn)辨析,這樣老師教的輕松,學(xué)生學(xué)得扎實(shí)。而且因?yàn)閷W(xué)生自已整理出來的知識結(jié)構(gòu),往往是最貼切學(xué)生的認(rèn)知能力的,從中也最能暴露學(xué)生知識的盲點(diǎn),有助于教師的矯正。這樣的教學(xué)利于學(xué)生主體性地發(fā)揮,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,讓學(xué)生在平等交流中體驗(yàn)互助合作的神奇,完善健康的人格個(gè)性。在這一環(huán)節(jié)領(lǐng)袖兒童脫穎而出。
2、小組合作握手游戲,感知組合知識。
承上一活動(dòng),門終于開了同學(xué)互相握手表示祝賀,從而引出:三個(gè)人之間可以握幾次手呢?先讓學(xué)生猜猜看?經(jīng)過上面的學(xué)習(xí),學(xué)生可能會(huì)猜是6次,也有的可能猜是3次,到底是幾次呢?學(xué)生親自握手試一試!此時(shí)我也走下講臺參與到學(xué)生的活動(dòng)中,并重點(diǎn)指導(dǎo)有順序的握手。小組活動(dòng)結(jié)束后,請一小組上臺展示握手情況,在鞏固了有序思考問題的同時(shí),引導(dǎo)學(xué)生用圖示來表示握手的方法。這樣設(shè)計(jì),既能使學(xué)生在握手的游戲中體驗(yàn)知識的形成過程,又可以作為課中活動(dòng),使學(xué)生在此放松,達(dá)到一舉兩得的效果。另外,用圖示來抽象形象的表示握手的方法,這又是一次數(shù)學(xué)思想方法的滲透。
3、對比發(fā)現(xiàn),區(qū)分排列組合。
在上一個(gè)環(huán)節(jié)中,學(xué)生通過握手游戲,對組合的規(guī)律進(jìn)行了本質(zhì)的探究,在活動(dòng)中已經(jīng)感受到了排列與組合的不同。我以一個(gè)問題引入同樣是3,為什么3個(gè)數(shù)字可以擺6個(gè)兩位數(shù),而3個(gè)人卻只能握3次手?這個(gè)問題是本課教學(xué)的難點(diǎn),我采取的是在操作活動(dòng)中對比感知排列與組合的不同,在同伴的交流和啟發(fā)中發(fā)現(xiàn),兩個(gè)數(shù)字交換位置變成了兩個(gè)數(shù),而握手時(shí)兩個(gè)人即使換位置還是這兩個(gè)人,所以就是一次。由于數(shù)學(xué)知識很多時(shí)候都顯得枯燥無味,在這兒我利用兒歌朗朗上口的特點(diǎn),學(xué)生更容易記住,編了一個(gè)溫馨提示。那么我也及時(shí)的做出小結(jié)并揭題:前面擺卡片的情況是與順序有關(guān)的叫排列,而握手的情況是與順序沒有關(guān)系的叫組合。從而突破了教學(xué)的難點(diǎn)。
。ㄈ┱故痉答?zhàn)儗W(xué)會(huì)為會(huì)學(xué)
根據(jù)低年級學(xué)生的心理特征和本節(jié)課的教學(xué)重難點(diǎn),我在練習(xí)設(shè)計(jì)時(shí)注重了目標(biāo)明確、重點(diǎn)突出、形式多樣、有趣味性、聯(lián)系生活,從而體會(huì)生活中處處有數(shù)學(xué)。仍然圍繞藍(lán)貓問題為情境,以搭配、起名、走路、號碼為載體,以訓(xùn)練為主線,以培養(yǎng)領(lǐng)袖兒童各種能力為目的,給學(xué)生搭建了一個(gè)展示反饋的平臺,讓所學(xué)的排列組合知識在這里得到應(yīng)用,讓學(xué)生的參與熱情在這里得到高漲,讓整節(jié)課在這里得到升華。
1、搭配問題
藍(lán)貓想請大家為它搭配一套漂亮的衣服,用一件上裝搭配一件下裝能搭配幾套呢?將衣服圖片貼在黑板上,學(xué)生感覺很新鮮,積極參與,學(xué)生說的同時(shí)師連線其實(shí)也在滲透一種作圖方法,并且用兩種顏色的筆區(qū)分開來,潛移默化的讓學(xué)生感受固定上衣的方法,老師并不滿足現(xiàn)狀,而是趁熱打鐵追問到:除此之外,還有哪些方法?進(jìn)而啟發(fā)得出還有固定下裝的方法。這種發(fā)散問題主要是培養(yǎng)學(xué)生從多角度、多方面、多領(lǐng)域去認(rèn)識客觀事物。
2、起名問題
藍(lán)貓請大家用孫、行、者這三個(gè)字給孫悟空取名字,看能給它取多少個(gè)名字?我讓三個(gè)學(xué)生戴生字頭飾排隊(duì),學(xué)生頓時(shí)興趣高漲,在排隊(duì)游戲中鞏固排列知識。
3、走路問題
藍(lán)貓從學(xué)校出發(fā)經(jīng)過數(shù)學(xué)廣角回到家有幾種不同的走法?你會(huì)選哪條?這也是一個(gè)組合問題,但是培養(yǎng)了學(xué)生的一種生活經(jīng)驗(yàn)直路最近。
4、號碼問題
藍(lán)貓的電話號碼后三位是1、8、9組成的,可能是什么?這是一個(gè)貼近生活的排列問題,也是一個(gè)拔高題,與三年級的知識銜接在一起。
另外,我在板書設(shè)計(jì)時(shí),力求體現(xiàn)知識性、簡潔性、藝術(shù)性,使學(xué)生一目了然。
【排列組合教案】相關(guān)文章:
排列組合高中教案03-07
排列組合解題方法總結(jié)06-28
高中教案教案03-05
關(guān)于教案模板 教案模板教案10-20
小班教案《小熊》教案11-19
(實(shí)用)高中教案教案01-21
絕句教案 杜甫《絕句》教案11-29
高中教案教案經(jīng)典2篇01-21
中班教案:春風(fēng)教案及反思11-24