久久精品99久久|国产剧情网站91|天天色天天干超碰|婷婷五天月一av|亚州特黄一级片|亚欧超清无码在线|欧美乱码一区二区|男女拍拍免费视频|加勒比亚无码人妻|婷婷五月自拍偷拍

教案

六年級數學教分數的基本性質教案

時間:2022-10-07 18:31:12 教案 我要投稿
  • 相關推薦

六年級數學教分數的基本性質教案

  學目標 :1、理解分數的基本性質,并了解它與除法中商不變的規(guī)律之間的聯(lián)系。

六年級數學教分數的基本性質教案

  2、理解和掌握分數的基本性質。

  3、培養(yǎng)學生觀察、理解、獻魈驕考扒ㄒ頗芰Α?/SPAN>

  4、較好實現(xiàn)知識教育與思想教育的有效結合。

  教學重點 :理解和掌握分數的基本性質。

  教學難點 :能熟練、靈活地運用分數的基本性質。

  教具準備 :“分數基本性質”課件,正方形紙片,彩色粉筆。

  教學過程 : 一、巧設伏筆、導入新課。

  1、出示課件:120÷30的商是多少?

  被除數和除都擴大3倍,商是多少?

  被除數和除數都縮小10倍呢?(出示后學生回答,課件顯示答案)

  2、在下面□里填上合適的數。

  1÷2=(1×5)÷(2×□)

  =(1÷□)÷(2÷4)

 、傧胍幌,你是根據什么填上面的數的?(生口答)

 。ㄕn件:商不變的性質)

 、谏滩蛔兊男再|是什么?(生口答)

  ③除法與分數之間有什么關系?

  生答,師板書:被除數÷除數=被除數/除數

  二、討論探究,學習新知。

  1、課件出示:1÷2= (怎么寫)

  ①1/2與( )相等?你能想出哪些數?有辦法怎么讓它們相等嗎?

  讓生合作探討。

 、谏鍪敬鸢福1/2=2/4=4/8……

  有選擇填入上數。

  2、引導學生證明它們相等。

  ①出課件:出示1個長方體,平均分成2份,得1/2,平均分成4份,得2/4……。

 。ㄕn件演示)

  上述演示讓學生感知后,問你發(fā)現(xiàn)了什么?(生討論)

 、谠倌嫦蛩伎迹^察板書和課件。

  問你又發(fā)現(xiàn)了什么?(生討論)

  得到:(板書)分數的分子和分母同時乘上或者除以相同的數,分數的大小不變。

  3、驗證、補充、強調

 、俪鍪2/5=2×2/5=4/5,對嗎?(驗證分數的基本性質),為什么?強調“同時”(在黑板板書上用彩筆勾劃強調)。

 、诔鍪3/4=3×3/4×4=9/16,對嗎?為什么?強調“相同的數”。

 、塾疫吜惺叫袉幔繛槭裁?3/4=3×0/4×0=?補充:(0除外)板書,并出示課件補充。

 、軞w納出上述板書為“分數的基本性質”(課題)。

  4、信息反饋、糾正、鞏固。

 、倥袛啵ǔ鍪菊n件)

  A、分數的分子,分母都乘上或除以相同的數,分數的大小不變。

  B、把15/20的分子縮小5倍,分母也縮小5倍,分數的大小不變。

  C、3/4的分子乘上3,分母除以3,分數的大小不變。

  D、10/24=10÷2/24÷2=10×3/24×3 ( )

  完成后,強調重點,加以鞏固。

 、谕瓿烧n本108頁例2(學生嘗試練習)

  強調運用了什么性質?課件:“分數的基本性質”醒目強調。

  三、實踐練習,信息綜合

  1、練一練

 、3/5=3×( )/5×( )=9/( )

 、7/8=( )/48

 、4÷18=( )/( )=4×5/18×( )=2/( )

  2、練習二十二1—3題。

  四、課堂總結、整體感知。

 。ㄔ谛畔⒕C合后,重點選擇性小結,形成整體),這節(jié)課我們學習了什么內容?可以應用在什么地方?這與我們學習過的什么性質有聯(lián)系?

  五、發(fā)散鞏固、自主選擇。

  想一想:(選擇一道你喜歡的題做)

  課件:①與1/2相等的分數有多少個?想象一下,把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數。

  ②9/24和20/32哪能一個數大一些,你能講出判斷的依據嗎

  小學六年級數學教案——數的整除 分數、小數的基本性質

  教學目標

  1.使學生對數的整除的有關概念掌握得更加系統(tǒng)、牢固.

  2.進一步弄清各概念之間的聯(lián)系與區(qū)別.

  3.使學生對最大公約數和最小公倍數的求法掌握得更加熟練.

  4.掌握分數、小數的基本性質.

  教學重點

  通過對主要概念進行整理和復習,深化理解,形成知識網絡.

  教學難點

  弄清概念間的聯(lián)系和區(qū)別,理解易混淆的概念.

  教學步驟

  一、鋪墊孕伏.

  教師談話:同學們,昨天老師讓大家在課下復習了第十冊課本中約數和倍數一章的內容,

  在這一章中我們學過了哪些概念呢?請同學們分組討論,討論時由一名同學做記錄.(學生匯報討論結果)

  揭示課題:在數的整除這部分知識中,有這么多的概念,那么這些概念之間又有怎樣的聯(lián)系呢?這節(jié)課,我們就把這些概念進行整理和復習.

  二、探究新知.

 。ㄒ唬┙⒅R網絡.【演示課件“數的整除”】

  1.思考:哪個概念是最基本的概念?并說一說概念的內容.

  反饋練習:

  在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除數能除盡除數的有( )個;被除數能整除除數的有( )個.

  教師提問:這四個算式中的被除數都能除盡除數,為什么只有這一個算式中的除數能整除被除數呢?整除與除盡到底有怎樣的關系呢?

  教師說明:能除盡的不一定都能整除,但能整除的一定能除盡.

  2.說出與整除關系最密切的概念,并說一說概念的內容.

  反饋練習:下面的說法對不對,為什么?

  因為15÷5=3,所以15是倍數,5是約數. ( )

  因為4.6÷2=2.3,所以4.6是2的倍數,2是4.6的約數. ( )

  明確:約數和倍數是互相依存的,約數和倍數必須以整除為前提.

  3.教師提問:

  由一個數的倍數,一個數的約數你又想到什么概念?并說一說這些概念的內容.

  根據一個數所含約數的個數的不同,還可以得到什么概念?

  互質數這個概念與哪個概念有關系?它們之間有怎樣的關系呢?

  互質數這個概念與公約數有關系,公約數只有1的兩個數叫做互質數.

  4.討論互質數與質數之間有什么區(qū)別?

  互質數講的是兩個數的關系,這兩個數的公約數只有1,質數是對一個自然數而言的,它只有1和它本身兩個約數.

  5.教師提問:

  如果我們把24寫成幾個質數相乘的形式,那么這幾個質數叫做24的什么數?

  只有什么數才能做質因數?

  什么叫做分解質因數?

  只有什么數才能分解質因數?

  6.教師提問:

  誰還記得,能被2、5、3整除的數各有什么特征?

  由一個數能不能被2整除,又可以得到什么概念?

 。ǘ┍容^方法.

  1.練習:求16和24的最大公約數和最小公倍數.

  2.思考:求最大公約數和最小公倍數有什么聯(lián)系和區(qū)別?

  (三)分數、小數的基本性質.

  1.教師提問:

  分數的基本性質是什么?

  小數的基本性質是什么?

  小學六年級數學教案——數的整除 分數、小數的基本性質教案

  教學目標

  1.使學生對數的整除的有關概念掌握得更加系統(tǒng)、牢固.

  2.進一步弄清各概念之間的聯(lián)系與區(qū)別.

  3.使學生對最大公約數和最小公倍數的求法掌握得更加熟練.

  4.掌握分數、小數的基本性質.

  教學重點

  通過對主要概念進行整理和復習,深化理解,形成知識網絡.

  教學難點

  弄清概念間的聯(lián)系和區(qū)別,理解易混淆的概念.

  教學步驟

  一、鋪墊孕伏.

  教師談話:同學們,昨天老師讓大家在課下復習了第十冊課本中約數和倍數一章的內容,

  在這一章中我們學過了哪些概念呢?請同學們分組討論,討論時由一名同學做記錄.(學生匯報討論結果)

  揭示課題:在數的整除這部分知識中,有這么多的概念,那么這些概念之間又有怎樣的聯(lián)系呢?這節(jié)課,我們就把這些概念進行整理和復習.

  二、探究新知.

  (一)建立知識網絡.【演示課件“數的整除”】

  1.思考:哪個概念是最基本的概念?并說一說概念的內容.

  反饋練習:

  在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除數能除盡除數的有( )個;被除數能整除除數的有( )個.

  教師提問:這四個算式中的被除數都能除盡除數,為什么只有這一個算式中的除數能整除被除數呢?整除與除盡到底有怎樣的關系呢?

  教師說明:能除盡的不一定都能整除,但能整除的一定能除盡.

  2.說出與整除關系最密切的概念,并說一說概念的內容.

  反饋練習:下面的說法對不對,為什么?

  因為15÷5=3,所以15是倍數,5是約數. ( )

  因為4.6÷2=2.3,所以4.6是2的倍數,2是4.6的約數. ( )

  明確:約數和倍數是互相依存的,約數和倍數必須以整除為前提.

  3.教師提問:

  由一個數的倍數,一個數的約數你又想到什么概念?并說一說這些概念的內容.

  根據一個數所含約數的個數的不同,還可以得到什么概念?

  互質數這個概念與哪個概念有關系?它們之間有怎樣的關系呢?

  互質數這個概念與公約數有關系,公約數只有1的兩個數叫做互質數.

  4.討論互質數與質數之間有什么區(qū)別?

  互質數講的是兩個數的關系,這兩個數的公約數只有1,質數是對一個自然數而言的,它只有1和它本身兩個約數.

  5.教師提問:

  如果我們把24寫成幾個質數相乘的形式,那么這幾個質數叫做24的什么數?

  只有什么數才能做質因數?

  什么叫做分解質因數?

  只有什么數才能分解質因數?

  6.教師提問:

  誰還記得,能被2、5、3整除的數各有什么特征?

  由一個數能不能被2整除,又可以得到什么概念?

 。ǘ┍容^方法.

  1.練習:求16和24的最大公約數和最小公倍數.

  2.思考:求最大公約數和最小公倍數有什么聯(lián)系和區(qū)別?

 。ㄈ┓謹怠⑿档幕拘再|.

  1.教師提問:

  分數的基本性質是什么?

  小數的基本性質是什么?

  2.練習.

 。1)想一想,小數點移動位置,小數大小會發(fā)生什么變化?

  (2)

 。3)下面這組數有什么特點?它們之間有什么規(guī)律?

  0.108 1.08 10.8 108 1080

  三、全課小結.

  這節(jié)課我們把數的整除的有關知識進行了整理和復習,進一步弄清了各概念之間的

  聯(lián)系和區(qū)別,并且強化了對知識的運用.

  四、隨堂練習.

  1.判斷下面的說法是不是正確,并說明理由.

 。1)一個數的約數都比這個數的倍數小.

 。2)1是所有自然數的公約數.

 。3)所有的自然數不是質數就是合數.

 。4)所有的自然數不是偶數就是奇數.

  (5)含有約數2的數一定是偶數.

 。6)所有的奇數都是質數,所有的偶數都是合數.

 。7)有公約數1的兩個數叫做互質數.

  2.下面的數哪些含有約數2?哪些是3的倍數?哪些能同時被2、3整除?哪些能同時被2、5整除?哪些能同時被3、5整除?哪些能同時被2、3、5整除?

  18 30 45 70 75 84 124 140 420

  小學六年級數學教案——數的整除,分數、小數的基本性質

  教學目的:

  1.使學生掌握整除、約數和倍數、質數和合數等概念,知道它們之間的聯(lián)系和區(qū)別。掌握能被2、5、3整除的數的特征。會分解質因數。會求最大公約數和最小公倍數。

  2.使學生在理解的基礎上掌握分數、小數的基本性質。

  教學過程:

  一、數的整除

  1.整除的意義:

  教師:。想一想.“什么叫做整除?”指名回答,

  教師進一步強調:。“整除中說的數是什么數?”(整數。)

  “商是什么數?”(整數。)“有沒有余數?”(沒有余數:)

  教師:“什么叫除盡?”。“兩數相除.余數是0。)

  “整除和除盡有什么聯(lián)系和區(qū)別?”指名回答。教師根據學生的回答,整理出下表:

  教師:“可以看出整除是除盡的一種特殊情況。”

  2.能被2、5、3整除的數的特征。

  教師:“我們已經學過能被2、5、3整除的數的特征。同學們還記得嗎沖指名說一說。然后提問:

  “能被2、5整除的數,在判別方法上有什么共同的地方?”(都根據個位數進行判別。)

  “能被3整除的數。在判別方法上與能被2、5整除的數有什么不同?”(根據各個數值上的數之和進行判別。)

  教師:“什么叫做奇數?什么叫做偶數:”

  “根據什么來判斷—一個數是奇數還是偶數?”

  3.約數和倍數:

  教師:“據整除的概念可以得到約數和倍數的概念:什么叫做約數?什么叫做倍數?”指名就一說。(如果a能被b整除。a就叫做b的倍數。b就叫做a的約數。)為了使學生進一步明確約數和倍數是相互依存的,教師可以接著提問:

  “能說6是約數.15是倍數嗎:應該怎么說?”

  教師說明:在研究約數和倍數時.我們所說的數一般只指自然數,不包括0。

  教師:“一個數的約數的個數是怎樣的:”(有限的。)

  “其中最小的約數是什么數:最大約數是什么數?”(1.這個數本身。)

  “一個數的倍數的個數是怎樣的:”(無限的。)

  “其中最小的倍數是什么數?”(這個數本身。)

  做練習十九的第:題。讓學生直接做在書上。教帥可以說明做的方法:在含有約數2的數”下面寫“2”,在3的倍數下面寫“3”。在能被5整除的數下面寫“5”,然后再進行判斷。集體訂正。

  4.質數和合數。

  教師指名說一說質數、合數的概念?捎幸庾R地讓學習有困難的學生說,其他同學進行補充。

  教師:“怎樣判斷——個數是質數還是合數?”(檢查這個數約數的個數.或查質數表。)指名說—說30以內有哪些質數。

  讓學生進行判斷:—個自然數如果不是質數,那么一定是合數。學生判斷后,教師說明:1既不是質數.也不是合數。

  5.分解質因數。

  指名說一說質因數、分解質因數的含義。

  做練習十九的第5題。學生獨立解答。教師巡視.集體訂正。

  6。公約數、最大公約數和公倍數、最小公倍數。

  (1)復習概念。

  教師:“什么叫做公約數?什么叫做最大公約數?”(幾個數公有的約數,叫做這幾個數的公約數;其中最大的—個叫做這幾個數的最大公約數。)“怎樣求幾個數的最大公約數?”讓學生舉例說明。

  “什么叫做公倍數?什么叫做最小公倍數?怎樣求幾個數的最小公倍數?”讓學生舉例說明。

  教師:“什么樣的數叫做互質數/(公約數只有l(wèi)的兩個數叫做互質數,)

  “質數和互質數有什么區(qū)別:”(質數足一個數。只有1和它本身兩個約數;互質數是兩個數.只有公約數1。)

  “兩個不同的質數一定互質嗎?”(兩個不同的質數—定互質。)

  “互質的兩個數一定都是質數嗎?”(不一定,如4和9互質,4,9都是合數。)

  (2)課堂練習。

  做練習十九的第1題、先讓學生獨立判斷,集體訂正時。讓學生說—說判斷的理由。

  做練習十九的第4題。學生獨立解答。教師巡視,集體訂正。

  教師根據前面的教學.整理出教科書第86頁的概念聯(lián)系圖。也可以把該圖變化成如下形式。

  小學六年級數學教案——數的整除 分數、小數的基本性質

  教學目標

  1.使學生對數的整除的有關概念掌握得更加系統(tǒng)、牢固.

  2.進一步弄清各概念之間的聯(lián)系與區(qū)別.

  3.使學生對最大公約數和最小公倍數的求法掌握得更加熟練.

  4.掌握分數、小數的基本性質.

  教學重點

  通過對主要概念進行整理和復習,深化理解,形成知識網絡.

  教學難點

  弄清概念間的聯(lián)系和區(qū)別,理解易混淆的概念.

  教學步驟

  一、鋪墊孕伏.

  教師談話:同學們,昨天老師讓大家在課下復習了第十冊課本中約數和倍數一章的內容,

  在這一章中我們學過了哪些概念呢?請同學們分組討論,討論時由一名同學做記錄.(學生匯報討論結果)

  揭示課題:在數的整除這部分知識中,有這么多的概念,那么這些概念之間又有怎樣的聯(lián)系呢?這節(jié)課,我們就把這些概念進行整理和復習.

  二、探究新知.

  (一)建立知識網絡.【演示課件“數的整除”】

  1.思考:哪個概念是最基本的概念?并說一說概念的內容.

  反饋練習:

  在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除數能除盡除數的有( )個;被除數能整除除數的有( )個.

  教師提問:這四個算式中的被除數都能除盡除數,為什么只有這一個算式中的除數能整除被除數呢?整除與除盡到底有怎樣的關系呢?

  教師說明:能除盡的不一定都能整除,但能整除的一定能除盡.

  2.說出與整除關系最密切的概念,并說一說概念的內容.

  反饋練習:下面的說法對不對,為什么?

  因為15÷5=3,所以15是倍數,5是約數. ( )

  因為4.6÷2=2.3,所以4.6是2的倍數,2是4.6的約數. ( )

  明確:約數和倍數是互相依存的,約數和倍數必須以整除為前提.

  3.教師提問:

  由一個數的倍數,一個數的約數你又想到什么概念?并說一說這些概念的內容.

  根據一個數所含約數的個數的不同,還可以得到什么概念?

  互質數這個概念與哪個概念有關系?它們之間有怎樣的關系呢?

  互質數這個概念與公約數有關系,公約數只有1的兩個數叫做互質數.

  4.討論互質數與質數之間有什么區(qū)別?

  互質數講的是兩個數的關系,這兩個數的公約數只有1,質數是對一個自然數而言的,它只有1和它本身兩個約數.

  5.教師提問:

  如果我們把24寫成幾個質數相乘的形式,那么這幾個質數叫做24的什么數?

  只有什么數才能做質因數?

  什么叫做分解質因數?

  只有什么數才能分解質因數?

  6.教師提問:

  誰還記得,能被2、5、3整除的數各有什么特征?

  由一個數能不能被2整除,又可以得到什么概念?

 。ǘ┍容^方法.

  1.練習:求16和24的最大公約數和最小公倍數.

  2.思考:求最大公約數和最小公倍數有什么聯(lián)系和區(qū)別?

 。ㄈ┓謹、小數的基本性質.

  1.教師提問:

  分數的基本性質是什么?

  小數的基本性質是什么?

  2.練習.

 。1)想一想,小數點移動位置,小數大小會發(fā)生什么變化?

 。2)

 。3)下面這組數有什么特點?它們之間有什么規(guī)律?

  0.108 1.08 10.8 108 1080

  三、全課小結.

  這節(jié)課我們把數的整除的有關知識進行了整理和復習,進一步弄清了各概念之間的

  聯(lián)系和區(qū)別,并且強化了對知識的運用.

  四、隨堂練習.

  1.判斷下面的說法是不是正確,并說明理由.

 。1)一個數的約數都比這個數的倍數。

 。2)1是所有自然數的公約數.

 。3)所有的自然數不是質數就是合數.

 。4)所有的自然數不是偶數就是奇數.

  (5)含有約數2的數一定是偶數.

 。6)所有的奇數都是質數,所有的偶數都是合數.

 。7)有公約數1的兩個數叫做互質數.

  2.下面的數哪些含有約數2?哪些是3的倍數?哪些能同時被2、3整除?哪些能同時被2、5整除?哪些能同時被3、5整除?哪些能同時被2、3、5整除?

  18 30 45 70 75 84 124 140 420

  3.填空.

  在1到20中,奇數有( );偶數有( );質數有( );合數有( );

  既是質數又是偶數的數是( ).

  4.按要求寫出兩個互質的數.

 。1)兩個數都是質數.

 。2)兩個數都是合數.

 。3)一個數是質數,一個數是合數.

  5.說出下面每組數的最大公約數和最小公倍數.

  42和14 36和9

  13和5 6和11

  6.0.75=12÷( )=( ) :12=

  五、布置作業(yè).

  1.把下面各數分解質因數.

  24 45 65 84 102 475

  2.求下面每組數的最大公約數和最小公倍數.

  36和48 16、32和24 15、30和90

  小學六年級數學教案——數的整除 分數、小數的基本性質

  學目標

  1.使學生對數的整除的有關概念掌握得更加系統(tǒng)、牢固.

  2.進一步弄清各概念之間的聯(lián)系與區(qū)別.

  3.使學生對最大公約數和最小公倍數的求法掌握得更加熟練.

  4.掌握分數、小數的基本性質.

  教學重點

  通過對主要概念進行整理和復習,深化理解,形成知識網絡.

  教學難點

  弄清概念間的聯(lián)系和區(qū)別,理解易混淆的概念.

  教學步驟

  一、鋪墊孕伏.

  教師談話:同學們,昨天老師讓大家在課下復習了第十冊課本中約數和倍數一章的內容,

  在這一章中我們學過了哪些概念呢?請同學們分組討論,討論時由一名同學做記錄.(學生匯報討論結果)

  揭示課題:在數的整除這部分知識中,有這么多的概念,那么這些概念之間又有怎樣的聯(lián)系呢?這節(jié)課,我們就把這些概念進行整理和復習.

  二、探究新知.

 。ㄒ唬┙⒅R網絡.【演示課件“數的整除”】

  1.思考:哪個概念是最基本的概念?并說一說概念的內容.

  反饋練習:

  在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除數能除盡除數的有( )個;被除數能整除除數的有( )個.

  教師提問:這四個算式中的被除數都能除盡除數,為什么只有這一個算式中的除數能整除被除數呢?整除與除盡到底有怎樣的關系呢?

  教師說明:能除盡的不一定都能整除,但能整除的一定能除盡.

  2.說出與整除關系最密切的概念,并說一說概念的內容.

  反饋練習:下面的說法對不對,為什么?

  因為15÷5=3,所以15是倍數,5是約數. ( )

  因為4.6÷2=2.3,所以4.6是2的倍數,2是4.6的約數. ( )

  明確:約數和倍數是互相依存的,約數和倍數必須以整除為前提.

  3.教師提問:

  由一個數的倍數,一個數的約數你又想到什么概念?并說一說這些概念的內容.

  根據一個數所含約數的個數的不同,還可以得到什么概念?

  互質數這個概念與哪個概念有關系?它們之間有怎樣的關系呢?

  互質數這個概念與公約數有關系,公約數只有1的兩個數叫做互質數.

  4.討論互質數與質數之間有什么區(qū)別?

  互質數講的是兩個數的關系,這兩個數的公約數只有1,質數是對一個自然數而言的,它只有1和它本身兩個約數.

  5.教師提問:

  如果我們把24寫成幾個質數相乘的形式,那么這幾個質數叫做24的什么數?

  只有什么數才能做質因數?

  什么叫做分解質因數?

  只有什么數才能分解質因數?

  6.教師提問:

  誰還記得,能被2、5、3整除的數各有什么特征?

  由一個數能不能被2整除,又可以得到什么概念?

  (二)比較方法.

  1.練習:求16和24的最大公約數和最小公倍數.

  2.思考:求最大公約數和最小公倍數有什么聯(lián)系和區(qū)別?

 。ㄈ┓謹、小數的基本性質.

  1.教師提問:

  分數的基本性質是什么?

  小數的基本性質是什么?

  2.練習.

  (1)想一想,小數點移動位置,小數大小會發(fā)生什么變化?

  (2)

 。3)下面這組數有什么特點?它們之間有什么規(guī)律?

  0.108 1.08 10.8 108 1080

  三、全課小結.

  這節(jié)課我們把數的整除的有關知識進行了整理和復習,進一步弄清了各概念之間的

  聯(lián)系和區(qū)別,并且強化了對知識的運用.

  四、隨堂練習.

  1.判斷下面的說法是不是正確,并說明理由.

 。1)一個數的約數都比這個數的倍數。

 。2)1是所有自然數的公約數.

 。3)所有的自然數不是質數就是合數.

  (4)所有的自然數不是偶數就是奇數.

 。5)含有約數2的數一定是偶數.

 。6)所有的奇數都是質數,所有的偶數都是合數.

 。7)有公約數1的兩個數叫做互質數.

  2.下面的數哪些含有約數2?哪些是3的倍數?哪些能同時被2、3整除?哪些能同時被2、5整除?哪些能同時被3、5整除?哪些能同時被2、3、5整除?

  18 30 45 70 75 84 124 140 420

  3.填空.

  在1到20中,奇數有( );偶數有( );質數有( );合數有( );

  既是質數又是偶數的數是( ).

  4.按要求寫出兩個互質的數.

 。1)兩個數都是質數.

  (2)兩個數都是合數.

 。3)一個數是質數,一個數是合數.

  5.說出下面每組數的最大公約數和最小公倍數.

  42和14 36和9

  13和5 6和11

  6.0.75=12÷( )=( ) :12=

  五、布置作業(yè).

  1.把下面各數分解質因數.

  24 45 65 84 102 475

  2.求下面每組數的最大公約數和最小公倍數.

  36和48 16、32和24 15、30和90

【六年級數學教分數的基本性質教案】相關文章:

數學《分數的基本性質》教學教案10-08

關于分數的基本性質的數學教學方案10-08

分數的基本性質教案匯編九篇04-03

分數的基本性質教案匯編五篇10-21

【精華】分數的基本性質教案3篇11-01

分數的基本性質教案合集六篇10-25

實用的分數的基本性質教案4篇10-28

分數的基本性質教案錦集五篇04-21

分數的基本性質教案模板匯總9篇04-24

分數的基本性質教案范文合集5篇04-27